pure and applied geophysics

, Volume 142, Issue 3–4, pp 663–685 | Cite as

Structural analysis of the Brigham City-Weber segment boundary zone, Wasatch normal fault, Utah: Implications for fault growth and structure

  • James P. Evans
  • Holly Langrock
Faulting and Crustal Deformation: Field Observations and Modeling

Abstract

We investigate the history, kinematics, principal stress orientations and geometry of deformation at the end of a bent normal fault segment of the Wasatch fault zone, Utah. Three fault types, developed in Archean crystalline rocks, reflect progressive uplift of fault-related footwall rocks. Chlorite-breccias and phyllonites reflect deep-level, reaction-assisted plastic deformation along the north-striking part of the segment. Planar, fretted faults which formed by cataclasis cut the phyllonites and breccias and are developed throughout the footwall of the segment. Youngest faults are hematitecoated, extremely narrow polished surfaces. Slip vectors and kinematic analyses of small faults developed in the footwall indicate oblique normal slip along the north-striking portion of the segment. Slip vectors and fault orientation along the northwest-striking portion of the segment reflect complexly oriented slip on faults which strike subparallel and at high angles to the main fault trace, yet slip is confined to a broad fault-parallel zone. Small faults at the southernmost tip of the segment indicate a strong influence of the north-striking Weber segment to the south. Inversion of fault data for principal stress orientations document complexly oriented principal stresses through the segment boundary zone and suggest that σ3 may have reoriented approximately 60° over the life of the segment. Subsurface structure combined with small fault data indicate the segment boundary is comprised of a southwest-plunging bedrock high which is reflected by a sharp bend in the Brigham City segment. The southern end of the Brigham City segment may have started, as a straight, north-striking fault which has bent due to changes in stress orientations and/or interaction with the adjacent Weber segment.

Key words

Faults segment boundaries fault rocks stress inversions fault growth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allmendinger, R. W., Marrett, R. A., andCladouhos, T. (1992),Faultkin, a Program for Analyzing Fault Slip Data for the Macintosh Computer. Copyrighted software.Google Scholar
  2. Andrews, D. J. (1989),Mechanics of Fault Junctions, J. Geophys. Res.94, 9389–9397.Google Scholar
  3. Angelier, J. (1979),Determination of the Mean Principal Directions of Stresses for a Given Fault Population, Tectonophys.56, T17-T26.Google Scholar
  4. Arabasz, W. J., Pechmann, J. C., andBrown, E. D. (1992),Observational seismology and the evaluation of earthquake hazards and risk in the Wasatch Front area, Utah. InAssessment of Regional Earthquake Hazards and Risk Along the Wasatch Front, Utah (Gori, P. L., and Hays, W. W., eds.) (U. S. Geol. Sur. Prof. Paper 1500-D) 36 pp.Google Scholar
  5. Best, M. G. (1988),Early Miocene Change in Direction of Least Principal Stress, Southwestern U.S.: Conflicting Influences from Dikes and Metamorphic Core-detachment Fault Terranes, Tectonics7, 249–259.Google Scholar
  6. Bjarnason, I. T., Cowie, P., Anders, M. H Seeber, L., andScholz, C. H. (1993)The 1912 Iceland Earthquake Rupture: Growth and Development of a Nascent Transform System, Bull. Seismol. Soc. Am.83, 416–435.Google Scholar
  7. Bruhn, R. L., Gibler, P. R., andParry, W. T. (1987),Rupture characteristics of normal faults: An example from the Wasatch fault zone, Utah. InContinental Extensional Tectonics (Coward, M. P., Dewey, J. F., and Hancock, P. L., eds.) (Geol. Soc. London Pub.28) pp. 337–353.Google Scholar
  8. Bruhn, R. L., Yonkee, W. A., andParry, W. T. (1990),Structural and Fluid-chemical Properties of Seismogenic Normal Faults, Tectonophys.175, 139–157.Google Scholar
  9. Bryant, B. (1988),Geology of the Framington Canyon Complex, U.S. Geol. Surv. Prof. Paper1476, 54 pp.Google Scholar
  10. Cowie, P. A. andScholz, C. H. (1992),Growth of the Faults by Accumulation of Seismic Slip, J. Geophys. Res.97, 11,085–11,095.Google Scholar
  11. Cox, S. J. D. andScholz, C. H. (1988),On the Formation and Growth of Faults, J. Struct. Geol.10, 413–430.Google Scholar
  12. Crittenden, M. D., Jr., andSorènsen, M. L. (1985a),Geology Map of the North Ogden and Part of the Ogden and Plain City Quadrangles, Box Elder and Weber Counties, Utah, U.S. Geol. Surv. Map I-606, scale 1:24,000.Google Scholar
  13. Crittenden, M. D., Jr., andSorensen, M. L. (1985b),Geologic Map of the Mantua Quadrangle and Part of the Willard Quadrangle, Box Elder, Weber, and Cache Counties, Utah, U.S. Geol. Surv. Map I-1605, scale 1:24,000.Google Scholar
  14. Crone, A. J., Machette, M. N., Bonilla, M. G., Lienkaemper, J. J., Pierce, K. L., Scott, W. E., andBucknam, R. C. (1987),Surface Faulting Accompanying the Borah Peak Earthquake and Segmentation of the Lost River Fault, Central Idaho, Bull. Seismol., Soc. Am.77 739–770.Google Scholar
  15. De Polo, C. M., Clark, D. B., Slemmons, D. B., andRamelli, A. R. (1991),Historical Surface Faulting in the Basin and Range Province, Western North America: Implications for Fault Segmentation, J. Struct. Geol.13, 123–136.Google Scholar
  16. Evans, J. P., andNeves, D. S. (1992),Footwall Deformation along Willard Thrust, Sevier Orogenic Belt: Implications for Mechanisms, Timing and Kinematics, Geol. Soc. Am. Bull.104, 516–527.Google Scholar
  17. Gephart, J. W. (1990a),Stress and the Direction of Slip on Faults, Tectonics9, 845–858.Google Scholar
  18. Gephart, J. W. (1990b),FMSI: A Fortran Program for Inverting Fault/Slickenside and Earthquake Focal Mechanism Data to Obtain the Regional Stress Tensor, Computers and Geosci.16, 953–989.Google Scholar
  19. Gilbert, G. K. (1928),Studies of Basin-range Structure, U.S. Geol. Surv. Professional Paper153, 89 pp.Google Scholar
  20. Grocott, J. (1981),Fracture Geometry of Pseudotachylyte Generation: A Study of Shear Fractures Formed during Seismic Events, J. Struct. Geol.3, 169–178.Google Scholar
  21. Janecke, S. U. (1993),Structures in Segment Boundary Zones of the Lost River and Lemhi Faults, East-Central Idaho, J. Geophys. Res.98, 16223–16238.Google Scholar
  22. King, G. C. P. (1986),Speculation on the Geometry of the Initiation and Termination of Earthquake Rupture and its Relation to Morphology and Geologic Structure, Pure Appl. Geophys.124, 567–585.Google Scholar
  23. Machette, M., Personius, S. F., Nelson, A. F., Schwartz, D. P., andLund, W. R. (1991),The Wasatch Fault Zone, Utah: Segmentation and Holocene Earthquakes, J. Struct. Geol.13, 137–149.Google Scholar
  24. Mabey, D. R. (1992),Subsurface geology along the Wasatch Fault area, Utah. InAssessment of Regional Earthquake Hazards and Risks Along the Wasatch Front, Utah (Gori, P. L., and Hays, W. W., eds.) (U.S. Geol. Surv. Professional Paper 1500).Google Scholar
  25. Michael, A. J. (1984),Determination of Stress from Slip Data: Faults and Folds, J. Geophys. Res.89, 11,517–11,526.Google Scholar
  26. Nelson, A. F., andPersonius, S. F. (1990),Preliminary Geologic Map of the Weber Segment, Wasatch Fault Zone, Weber and Davis Counties, Utah, U.S. Geol. Surv. Map MF-2132, scale 1:50,000.Google Scholar
  27. Nelson, A. R., andPersonius, S. F (1987),A Nonconservative Barrier to Holocene Rupture Propagation in the Northern Wasatch Fault Zone, Utah, Int. Un. Quat. Res. Int. Cong., 12th Congress Prog. w. Abst., 231.Google Scholar
  28. Olig, S. S., andBruhn, R. L. (1989),Chronology of Structures in the Little Cottonwood Stock: Evidence for Stress Field Rotations within the Wasatch Fault Footwall, Geol. Soc. Am. Abst.21, 125.Google Scholar
  29. Parry, W. T., andBruhn, R. L. (1986),Pore Fluid and Seismogenic Characteristics of Fault Rock at Depth on the Wasatch Fault, Utah, J. Geophys. Res.91, 730–744.Google Scholar
  30. Pavlis, T. L., Serpa, L. F., andKeener, C. (1993),Role of Seismogenic Processes in Fault-rock Development, an Example from Death Valley, California, Geology21, 267–270.Google Scholar
  31. Personius, S. F. (1990),Surficial Geologic Map of the Brigham City Segment and Adjacent Parts of the Weber and Collinston Segments, Wasatch Fault Zone, Box Elder and Weber Counties, Utah, U.S. Geol. Surv. Map I-1979, scale 1:50,000.Google Scholar
  32. Petit, J. P. (1987),Criteria for the Sense of Movement on Fault Surfaces in Brittle Rocks, J. Struct. Geol.9, 597–608.Google Scholar
  33. Pollard, D. D., Saltzer, S. D., andRubin, A. M. (1993),Stress Inversion Methods: Are they Based on Faulty Assumptions?, J. Struct. Geol.15, 1045–1054.Google Scholar
  34. Power, W. L., andTullis, T. E. (1992),The Contact between Opposing Fault Surfaces at Dixie Valley, Nevada, and Implications for Fault Mechanics, J. Geophys. Res.97, 15425–15435.Google Scholar
  35. Reches, Z. (1987),Determination of the Tectonic Stress Tensor from Slip along Faults that Obey the Coulomb Yield Condition, Tectonics6, 849–861.Google Scholar
  36. Ren, X., Kowallis, B. J., andBest, M. G. (1989),Paleostress History of the Basin and Range Province in Western Utah and Eastern Nevada, Geology17, 487–490.Google Scholar
  37. Schirmer, T. W. (1988),Structural Analysis Using Thrust-fault Hanging Wall Sequences Diagrams: Ogden Duplex, Wasatch Range, Utah, Am. Assoc. Pet. Geol. Bull.72, 573–585.Google Scholar
  38. Scholz, C. H.,The Mechanics of Earthquakes and Faulting (Cambridge University Press 1990) 439 pp.Google Scholar
  39. Schwartz, D. P., andCoppersmith, K. J. (1984),Fault Behavior and Characteristic Earthquakes—Examples from the Wasatch and San Andreas Fault Zones, J. Geophys. Res.89, 5681–5698.Google Scholar
  40. Smith, R. B., andBruhn, R. L. (1984),Intraplate Extensional Tectonics of the Eastern Basin-range: Inferences on Structural Style from Seismic Reflection Data, Regional Tectonics, and Thermal-mechanical Models of Brittle-ductile Deformation, J. Geophys. Res.89, 5733–5762.Google Scholar
  41. Susong, D. D., Janecke, S. U., andBruhn, R. L. (1990),Structure of a Fault Segment Boundary in the Lost River Fault Zone, and Possible Effect on the 1983 Borah Peak Earthquake Rupture, Bull. Seismol. Soc. Am.80, 57–68.Google Scholar
  42. Wheeler, R. L., andKrystinik, K. B. (1988),Segmentation of the Wasatch Fault Zone, Utah—Summaries, Analyses, and Interpretation of Geologic and Geophysical Data U.S. Geol. Surv. Bulletin1827. 47 pp.Google Scholar
  43. Yonkee, W. A. (1992),Basement-cover Relations, Sevier Orogenic Belt, Northern Utah, Geol. Soc. Am. Bull.104, 280–302.Google Scholar
  44. Zoback, M. L. (1983),Structure and Cenozoic tectonism along the Wasatch Fault zone, Utah. InTectonic and Stratigraphic Studies in the Eastern Great Basin (Todd, V. R., and Howard, K. A., eds.) (Geol. Soc. Am. Memoir157) pp. 3–27.Google Scholar
  45. Zoback, M. L. (1989),State of Stress and Modern Deformation in the Northern Basin and Range Province, J. Geophys. Res.94, 7105–7128.Google Scholar
  46. Zoback, M. L., Anderson, R. E., andThompson, G. A. (1981).Cainozoic Evolution of the State of Stress and Style of Tectonism of the Basin and Range Province of the Western United States, Roy. Soc. Lond. Phil. Trans. Ser.A300, 407–434.Google Scholar

Copyright information

© Birkhäuser Verlag 1994

Authors and Affiliations

  • James P. Evans
    • 1
  • Holly Langrock
    • 1
  1. 1.Department of GeologyUtah State UniversityLoganUSA

Personalised recommendations