Advertisement

pure and applied geophysics

, Volume 104, Issue 1, pp 623–634 | Cite as

Electrofreezing of supercooled water

  • H. R. Pruppacher
Article

Summary

The results of a wind tunnel and could chamber investigation on the effect of intense electric fields on ice-nucleation in supercooled water are presented. It is found that electrostatically charged surfaces and externally applied electric fields significantly enhance ice-nucleation. This finding is supported by a review of recent work reported in literature. Several mechanisms are considered which can be made responsible for electrofreezing. A discussion of the electrofreezing effect suggests that it is the electrical relief of the surface of a solid substrate rather than the crystallochemical relief which is the determining factor in heterogeneous ice nucleus formation.

Keywords

Recent Work Wind Tunnel Determine Factor Solid Substrate Nucleus Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. J. Mason,The physics of Cloud (Oxford University Press, London, 1972).Google Scholar
  2. [2]
    H. R. Pruppacher andM. Neiburger,Design and performance of the UCLA cloud tunnel, Proc. Int. Conf. Cloud Physics, Toronto (1968), 389–392.Google Scholar
  3. [3]
    K. V. Beard andH. R. Pruppacher,A determination of the terminal velocity and drag of small water drops by means of a wind tunnel, J. Atmos. Sci.26 (1969), 1066–1072.Google Scholar
  4. [4]
    K. V. Beard andH. R. Pruppacher,A wind tunnel investigation of the rate of evaporation of small water drops falling at terminal velocity in air, J. Atmos. Sci.28 (1971), 1455–1464.Google Scholar
  5. [5]
    L. Dufour,Über das Gefrieren des Wassers und über die Bildung des Hagels, Poggendorfs Ann. Physik114 (1861), 530–554.Google Scholar
  6. [6]
    W. Rau,Eiskeimbildung durch dielektrische Polarisation, Z.f. Naturforsch.6a (1951), 649–457.Google Scholar
  7. [7]
    V. J. Schaefer,Project Cirrus, Gen. Electric Res. Lab. Final Rept. (1953), 52.Google Scholar
  8. [8]
    R. W. Salt,Effect of electrostatic field on freezing of supercooled water and insects, Science133 (1961), 458.Google Scholar
  9. [9]
    H. R. Pruppacher,The effect of an external electric field on the supercooling of water drops, J. Geophys. Res.68 (1963), 4463–4474.Google Scholar
  10. [10]
    H. R. Pruppacher,The effects of electric fields on cloud physical processes, J. Appl. Math. and Phys. (ZAMP)14 (1963), 590–599.Google Scholar
  11. [11]
    M. Roulleau,Influence of an electric field on the freezing of water, Ann. Geophys.20 (1964), 319–324.Google Scholar
  12. [12]
    M. Roulleau andM. Poc,Électrocongélation des brouillards surfondus, Compte. Rend.264 (1967), 1480–1483.Google Scholar
  13. [13]
    M. Poc,Électrocongélation des brouillards surfondus, J. de Rech. Atmos.3 (1967), 127–137.Google Scholar
  14. [14]
    C. Garraud,Rôle du givrage des électrodes dan l'électrocongélation des brouillards surfondus, Compte Rend.268 (1969), 1042–1044.Google Scholar
  15. [15]
    V. J. Schaefer,The generation of large numbers of ice crystals in an electric field, J. Appl. Meteorol.7 (1968), 452–455.Google Scholar
  16. [16]
    M. Roulleau, L. F. Evans andN. Fukuta,The electrical nucleation of ice in supercooled clouds, J. Atmos. Sci.28 (1971), 737–740.Google Scholar
  17. [17]
    M. A. Abbas andJ. Latham,The electrofreezing of supercooled water drops, J. Meteorol. Soc. Japan47 (1969), 65–74.Google Scholar
  18. [18]
    M. H. Smith, R. F. Griffiths andJ. Latham,The freezing of raindrops falling through strong electric fields, Quart. J. Roy. Meteorol. Soc.97 (1971), 495–505.Google Scholar
  19. [19]
    L. R. Koenig,Drop freezing through drop breakup, J. Atmos. Sci.22 (1965), 448–451.Google Scholar
  20. [20]
    T. G. Gabarashvili andN. V. Gliki,Origination of the ice phase in supercooled water under the influence of electrically charged crystals, Izvestiya Acad. Sci. USSR Atmospheric and Oceanic Physics3 (1967), 570–574.Google Scholar
  21. [21]
    F. Albani,Sur l'action glacogène de l'étincelle électrique sur les images surfondus, Bull. Obs. Puy de Dôme No. 1 (1965), 7–10.Google Scholar
  22. [22]
    D. C. Blanchard,Electrostatic field and freezing, Science133 (1961), 1678.Google Scholar
  23. [23]
    L. B. Loeb,A tentative explanation of the electric field effect on the freezing of supercooled water drops, J. Geophys. Res.68 (1963), 4475.Google Scholar
  24. [24]
    L. B. Loeb, A. F. Kip andA. W. Einarsson,On the nature of ionic sign preference in Wilson Cloud Chamber condensation experiments, J. Chem. Phys.6 (1938), 264–273.Google Scholar
  25. [25]
    A. Rahman andF. H. Stillinger,Molecular dynamics study of liquid water, J. Chem. Phys.55 (1971), 3336–3359.Google Scholar
  26. [26]
    L. Dufour andR. Defay,Thermodynamics of Clouds (Akademic Press, New York, 1963).Google Scholar
  27. [27]
    L. F. Evans,The role of the adsorbed layer in ice nucleation, Proc. Conf. Cloud Physics, Fort Collins (1970), 14.Google Scholar
  28. [28]
    G. Nemethy andH. A. Scheraga,Structure of water and hydrophobic bonding in proteins, J. Chem. Phys.36 (1962), 3401–3417.Google Scholar
  29. [29]
    H. H. Jellinek, M. D. Luh, andV. Nagarajan,Sorbed water on polymers near 0°C, Koll. Z. und Z. f. Polymere232 (1969), 758–763.Google Scholar
  30. [30]
    N. R. Gokhale,Dependence of ice nucleating efficiencies of chemical aerosols in a supercooled cloud and bulk water, Proc. Int. Conf. on Cloud Physics, Tokyo (1965), 176–180.Google Scholar
  31. [31]
    T. E. Hoffer,A laboratory investigation of droplet freezing, J. of Meteorol.18 (1961), 766–778.Google Scholar
  32. [32]
    N. R. Gokhale andJ. D. Spengler,Freezing of freely suspended, supercooled water drops by contact nucleation, J. Appl. Meteorol.11 (1972), 157–160.Google Scholar
  33. [33]
    N. Gokhale andJ. Goold,Droplet freezing by surface nucleation, J. Appl. Meteorol.7 (1968), 870–874.Google Scholar
  34. [34]
    J. Latham,The electrification of snowstorms and sandstorms, Quart. J. Roy. Meteorol. Soc.90 (1964), 91–95.Google Scholar
  35. [35]
    K. L. Chopra,Growth of thin metal films under applied electric field, Appl. Phys. Letters7 (1965), 140–142.Google Scholar
  36. [36]
    K. L. Chopra,Influence of electric field on the growth of thin metal films, J. Appl. Phys.37 (1966), 2249–2254.Google Scholar
  37. [37]
    K. Mihana andM. Tanaka,An electrostatic field effect in the epitaxial growth of gold particles evaporated onto sodium chloride, J. Crystal Growth2 (1968), 51–53.Google Scholar
  38. [38]
    V. P. Vlasov, Y. M. Gerasimov andG. I. Distler,Electrical relief of the surface of a crystal substrate as the determining factor in nucleus formation and growth, Soviet Physics, Crystallography15 (1970), 289–293.Google Scholar

Copyright information

© Birkhäuser Verlag 1973

Authors and Affiliations

  • H. R. Pruppacher
    • 1
  1. 1.Cloud Physics Laboratory, Department of MeteorologyUniversity of CaliforniaLos AngelesUSA

Personalised recommendations