Advertisement

pure and applied geophysics

, Volume 130, Issue 2–3, pp 571–604 | Cite as

Interpretation, reliability and accuracies of parameters deduced by the spaced antenna method in middle atmosphere applications

  • W. K. Hocking
  • P. May
  • J. Röttger
Article

Abstract

The spaced antenna method has proved to be an important and relatively inexpensive radar technique for making measurements of atmospheric wind velocities and other parameters. This discussion examines the reliability and accuracies of various parameters which can be measured with the technique.

After a brief introduction, a series of comparisons of winds measured by the spaced antenna method and simultaneously by other techniques are presented. It is concluded that when using weak partial reflections in the height range 0–100km, the spaced antenna technique provides reliable estimates of the neutral air motion. Following this the assumptions made in applying the method are considered in more detail. The possibility of systematic errors and the likelihood of erroneous measurements are examined, and the accuracy of any particular measurement of wind speed is discussed. Previous objections to the technique are discussed, and in general shown to be invalid.

Other parameters apart from wind speeds can be measured with the spaced antenna technique, such as pattern scale, the rate of natural fading, and angles of arrival. The meanings of these parameters are discussed in terms of physical quantities such as turbulent energy dissipation rates, small-scale gravity wave velocity fluctuations, and aspect sensitivities of scatterers, and it is indicated when and how these derived parameters can be applied to deduce meaningful physical quantities. The need for great caution in making these interpretations is discussed; for example it is not always possible to use the rate of natural fading to estimate the intensity of turbulence, although in some cases this is possible. Finally, interferometric applications of spaced antenna systems are discussed.

Key words

Winds spaced antennas correlation analysis scatterers interferometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, G. W., Edwards, D. P., andBrosnahan, B. R. (1985),The imaging Doppler interferometer: Data analysis, Radio Sci.20, 1481–1492.Google Scholar
  2. Atlas, D.,Advances in Geophysics (Academic Press, New York 1964), vol. 10, pp. 317–483.Google Scholar
  3. Awe, O. (1964a),Errors in correlation between time series, J. Atmos. Terr. Phys.26, 1239–1255.Google Scholar
  4. Awe, O. (1964b),Effects of errors in correlation on the analysis of the fading of radio waves, J. Atmos. Terr. Phys.26, 1257–1271.Google Scholar
  5. Ball, S. M. (1981),Upper atmosphere tide and gravity waves at mid- and low-latitudes, Ph.D. Thesis, University of Adelaide, Adelaide, Australia.Google Scholar
  6. Barnett, J. J., andCorney, M. (1985),Temperature data from satellites, MAP,16, 3–11 (eds. K. Labitzke, J. J. Barnett and B. Edward) (University of Illinois, Urbana, Ill., U.S.A.).Google Scholar
  7. Briggs, B. H. (1977),Ionospheric drifts, J. Atmos. Terr. Phys.39, 1023–1033.Google Scholar
  8. Briggs, B. H. (1980),Radar observations of atmospheric winds and turbulence: A comparison of techniques, J. Atmos. Terr. Phys.42, 823–833.Google Scholar
  9. Briggs, B. H. (1984),The analysis of spaced sensor records by correlation techniques, Handbook for MAP13, (ed. R. A. Vincent), 166–186 (publ. by SCOSTEP Secretariat, Univ. of Illinois, Urbana, Ill).Google Scholar
  10. Briggs, B. H., andMaude, A. H. (1978),Spaced sensor observations of pattern motion, J. Geophys. Res.83, 5309–5311.Google Scholar
  11. Briggs, B. H., Phillips, G. J., andShinn, D. H. (1950),The analysis of observations on spaced receivers of the fading of radio signals, Proc. Phys. Soc.63B, 106–121.Google Scholar
  12. Briggs, B. H., andVincent, R. A. (1973),Some theoretical considerations on remote probing of weakly scattering irregularities, Aust. J. Phys.26, 805–814.Google Scholar
  13. Brownlie, G. P., Dryburgh, L. G., andWhitehead, J. D. (1973),Measurement of the velocity of waves in the ionosphere: A comparison of the ray theory approach and diffraction theory, J. Atmos. Terr. Phys.35, 2147–2162.Google Scholar
  14. Chao, J. K., Kuo, F. S., Chu, Y. S., Fu, I. J., Röttger, J., andLiu, C. H. (1986),The first operation and results of the Chung-Li VHF radar, Handbook for MAP20 (eds. S. A. Bowhill and B. Edwards), 359–363 (publ. by SCOSTEP Secretariat, Univ. of Illinois, Urbana, Ill.).Google Scholar
  15. Farley, D. T., Ierkic, H. M., andFejer, B. G. (1981),Radar interferometry: A new technique for studying plasma turbulence in the ionosphere, J. Geophys. Res.86, 1467–1472.Google Scholar
  16. Fedor, L. S. (1967),A statistical approach to the determination of 3-dimensional ionospheric drifts, J. Geophys. Res.72, 5401–5415.Google Scholar
  17. Fedor, L. S., andPlywaski, W. (1972),The interpretation of ionospheric radio drift measurements. The effects of signal coupling among spaced sensor channels, J. Atmos. Terr. Phys.34, 1285–1303.Google Scholar
  18. Felgate, D. G. (1970),On the point source effect in the measurement of ionospheric drifts, J. Atmos. Terr. Phys.32, 241–245.Google Scholar
  19. Felgate, D. G., andGolley, N. G. (1971),Ionospheric irregularities and movements observed with a large antenna array, J. Atmos. Terr. Phys.33, 1353–1369.Google Scholar
  20. Fraser, G. J., andKochanski, A. (1970),Ionospheric drifts from 64–108 km altitudes at Birdlings Flat, Annals. Geophys.26, 675–687.Google Scholar
  21. Gage, K. S. (1983),On the measurement of vertical velocity by MST radar, Handbook for MAP9 (eds. S. A. Bowhill and B. Edwards), 215–226 (publ. by SCOSTEP Secretariat, Univ. of Illinois, Urbana, Ill.).Google Scholar
  22. Gage, K. S., Carter, D. A., andEcklund, W. L. (1981),The effect of gravity waves on specular echoes observed by the Poker Flat MST radar, Geophys. Res. Lett.8, 599–602.Google Scholar
  23. Golley, M., andRossiter, D. (1970),Some tests of methods of analysis of ionospheric drift records using an array of 89 aerials, J. Atmos. Terr. Physics32, 1215–1233.Google Scholar
  24. Gregory, J. B., andRees, D. T. (1971),Wind profiles ot 100 km near 53N during 1969, J. Atmos. Sci.28, 1079–1082.Google Scholar
  25. Harper, R., andWoodman, R. F. (1977),Preliminary multiheight radar observations of waves ana winds in the mesosphere over Jimarca, J. Atmos. Terr. Phys.39, 959–963.Google Scholar
  26. Hines, C. O. (1960),Internal atmospheric gravity waves of ionospheric heights, Can. J. Phys.38, 1441–1481.Google Scholar
  27. Hines, C. O. (1968),Some consequences of gravity-wave critical layers in the upper atmosphere, J. Atmos. Terr. Phys.30, 837–843.Google Scholar
  28. Hines, C. O. (1972),Motions in the ionospheric D and E regions, Phil. Trans. Roy. Soc. Lond.A271, 457–471.Google Scholar
  29. Hines, C. O. (1976),Corrections to papers on ionospheric drifts, J. Atmos. Terr. Phys.38, 561–563.Google Scholar
  30. Hines, C. O., andRao, R. R. (1968),Validity of three-station methods of determining ionospheric motions, J. Atmos. Terr. Phys.30, 979–993.Google Scholar
  31. Hocking, W. K. (1979),Angular and temporal characteristics of partial reflections from the D-region of the ionosphere, J. Geophys. Res.84, 845–852.Google Scholar
  32. Hocking, W. K. (1983a),On the extraction of atmospheric turbulence parameters from radar backscatter Dopple spectra—I. Theory, J. Atmos. Terr. Phys.45, 89–102.Google Scholar
  33. Hocking, W. K. (1983b),Mesospheric turbulence intensities measured with a HF radar at 35°S II, J. Atmos. Terr. Phys.45, 103–114.Google Scholar
  34. Hocking, W. K. (1986),Observation and measurements of turbulence in the middle atmosphere with a VHF radar, J. Atmos. Terr. Phys.48, 655–670.Google Scholar
  35. Hocking, W. K. (1987),Radar studies of small-scale structure in the upper middle atmosphere and lower ionosphere, Adv. Space. Res.7, 327–338.Google Scholar
  36. Hocking, W. K., andVincent, R. A. (1982),A comparison between HF partial reflection profiles from the D-region and simultaneous Langmuir Probe electron density measurement, J. Atmos. Terr. Phys.44, 843–854.Google Scholar
  37. Hodges, R. R., Jr. (1967),Generation of turbulence in the upper atmosphere by internal gravity waves, J. Geophys. Res.72, 3455–3458.Google Scholar
  38. Jones, K. L. (1982),Keeping track of radio echoes from the D-region, J. Atmos. Terr. Phys.44, 55–60.Google Scholar
  39. Koshelkov, P. (1985),Observed winds and temperatures in the Southern Hemisphere, MAP16, 3–11 (eds. K. Labitzke, J. J. Barnett and B. Edwards) (University of Illinois, Urbana, Illinois, U.S.A.).Google Scholar
  40. Larsen, M. F., Kelly, M. C., andGage, K. S. (1982),Turbulence spectra in the upper troposphere and lower stratosphere at periods between 2 hours and 40 days, J. Atmos. Sci.39, 1035–1041.Google Scholar
  41. Manson, A. H., Meek, C. E., Massebeuf, M., Fellous, J. L., Elford, W. G., Vincent, R. A., Craig, R. L., Roper, R. G., Avery, S., Balsley, B. B., Fraser, G. J., Smith, M. J., Clark, R. R., Kato, S., Tsuda, T., Ebel, A. (1985),Mean winds of the upper middle atmosphere (60–110 km): A global distribution from radar systems (M. F., Meteor, VHF); Handbook for MAP16, (eds. K. Labitzke, J. J. Barnett and B. Edwards), 239–253 (publ. by SCOSTEP Secretariat, Univ. of Illinois, Urbana, Ill.).Google Scholar
  42. Manson, A. H., Meek, C. E., andGregory, J. B. (1981),Gravity waves of short period (5–90 min), in the lower thermosphere at 52°N (Saskatoon, Canada), 1978/1979, J. Atmos. Terr. Phys.43, 35–44.Google Scholar
  43. May, P. T. (1988),Statistical errors in the determination of wind velocities by the spaced antenna techniques, J. Atmos. Terr. Phys.50, 21–32.Google Scholar
  44. Meek, C. E., (1980),An efficient method of analysing ionospheric drifts data, J. Atmos. Terr. Phys.42, 835–839.Google Scholar
  45. Meek, C. E., Manson, A. H., andGregory, J. B. (1979),Internal consistency analysis for partial and total reflection drifts data, J. Atmos. Terr. Phys.41, 251–258.Google Scholar
  46. Meek, C. E., andManson, A. H. (1987),Medium frequency interferometry at Saskatoon, Canada, Physical Scripta35, 917–921.Google Scholar
  47. Pfister, W. (1971),The wavelike nature of inhomogeneities in the E-region, J. Atmos. Terr. Phys.33, 999–1025.Google Scholar
  48. Phillips, G. J., andSpencer, M. (1955),The effects of anisometric amplitude patterns in the measurement of ionospheric drifts, Proc. Phys. Soc.68B, 481–492.Google Scholar
  49. Röttger, J. (1980),Reflection and scattering of VHF radar signals from atmospheric refractivity structures, Radio Sci.15, 259–276.Google Scholar
  50. Röttger, J. (1981a),Investigations of lower and middle atmosphere dynamics with spaced antenna drift radars, J. Atmos. Terr. Phys.43, 277–292.Google Scholar
  51. Röttger, J. (1981b),The capabilities of VHF radar for meteorological observations, Preprint of Nowcasting Symposium, Third Scientific Assembly of International Association of Meterology and Atmospheric Physics, Hamburg, FRG, 17–28 Aug. 1981.Google Scholar
  52. Röttger, J. (1983),The correlation of winds measured with a spaced antenna VHF radar and radiosondes, Preprint, 21st Conf. on Radar Meteorology, 97–99 (publ. by Amer. Meteor. Soc., Boston, Mass.).Google Scholar
  53. Röttger, J. (1984),Signal statistics of the radar echoes—angle of arrival statistics, Handbook for MAP14 (eds. S. A. Bowhill and B. Edwards), 84–87 (publ. by SCOSTEP Secretariat, Univ. of Illinois, Urbana, Ill.).Google Scholar
  54. Röttger, J. (1987),VHF radar measurements of small-scale and meso-scale dynamical processes in the middle atmosphere, Phil. Trans. R. Soc. Lond. A323, 611–628.Google Scholar
  55. Röttger, J., andIerkic, H. M. (1985),Postset beam steering and interferometer applications of VHF radars to study winds, waves, and turbulence in the lower and middle atmosphere, Radio Sci.20, 1461–1480.Google Scholar
  56. Röttger, J., Rastogi, P. K., Woodman, R. F. (1979),High resolution VHF radar observations of turbulence structures in the mesosphere, Geophys. Res. Letts.6, 617–620.Google Scholar
  57. Röttger, J., andCzechowsky, P. (1980),Tropospheric and stratospheric wind measurements with the spaced antenna drifts technique and the Doppler beam swinging technique using a VHF radar, Preprint, 19th Conf. on Radar Meteorology of Am. Met. Soc., Miami, FL, USA, 15–18 Apr., pp. 577–584.Google Scholar
  58. Röttger, J., andVincent, R. A. (1978),VHF radar studies of tropospheric velocities and irregularities using spaced antenna techniques, Geophys. Res. Lett.5, 917–920.Google Scholar
  59. Royrvik, O. (1982),Drift and aspect sensitivity of scattering irregularities in the upper equatorial E region, J. Geophys. Res.87, 8338–8342.Google Scholar
  60. Stubbs, T. J. (1973),The measurement of winds in the D region of the ionosphere by the use of partially reflected radiowaves, J. Atmos. Terr. Phys.35, 909–919.Google Scholar
  61. Stubbs, T. J. (1977),A study of ground diffraction parameters associated with D-region partial reflections, J. Atmos. Terr. Phys.39, 589–594.Google Scholar
  62. Stubbs, T. J., andVincent, R. A. (1973),Studies of D-region drifts during the winters of 1970–1972, Australian J. Phys.26, 645–660.Google Scholar
  63. VanZandt, T. E., andVincent, R. A. (1983),Is VHF Fresnel reflectivity due to low frequency buoyancy waves? Handbook for MAP9 (eds. S. A. Bowhill and B. Edwards), 78–80 (publ. by SCOSTEP Secretariat, Univ. of Illinois, Urbana, Ill.).Google Scholar
  64. Vincent, R. A., andBall, S. M. (1981),Mesospheric winds at low and mid-latitude in the Southern Hemisphere, J. Geophys. Res.86, 9159–9169.Google Scholar
  65. Vincent R. A., andReid, I. M. (1983),HF Doppler measurements of mesospheric gravity wave momentum fluxes, J. Atmos. Sci.40, 1321–1333.Google Scholar
  66. Vincent, R. A., andRöttger, J. (1980),Spaced antenna VHF radar observations of tropospheric velocities and irregularities, Radio Sci.15, 319–335.Google Scholar
  67. Vincent, R. A., Stubbs, T. J., Pearson, P. H. O., Lloyd, K. H., andLow, C. H. (1977),A comparison of partial reflection drifts with winds determined by rocket techniques, J. Atmos Terr. Phys.39, 813–821.Google Scholar
  68. Vincent, R. A., May, P. T., Hocking, W. K., Elford, W. G., Candy, B. H., andBriggs, B. H. (1987),First results with the Adelaide VHF radar: Spaced antenna studies of tropospheric winds, J. Atmos. Terr. Phys.49, 353–366.Google Scholar
  69. Weinstock, J. (1981),Energy dissipation rates of turbulence in the stable free atmosphere, J. Atmos. Sci.38, 880–883.Google Scholar
  70. Wright, J. W., Glass, M., andSpizzichino, A. (1976),The interpretation of ionospheric radio drift measurements—viii. Direct comparisons of meteor radar winds and Kinesonde measurements: Mean and random motions, J. Atmos. Terr. Phys.38, 713–729.Google Scholar
  71. Wright, J. W., andPitteway, M. L. V. (1978),Computer simulation of ionospheric radio drift measurements and their analysis by correlation methods, Radio Sci.13, 189–210.Google Scholar

Copyright information

© Birkhäuser Verlag 1989

Authors and Affiliations

  • W. K. Hocking
    • 1
  • P. May
    • 2
  • J. Röttger
    • 3
  1. 1.Department of Physics and Mathematical PhysicsUniversity of AdelaideAdelaideAustralia
  2. 2.Radio Atmospheric Science CenterKyoto UniversityUji KyotoJapan
  3. 3.Max Planck Institut für AeronomieKaltenburg-LindauFederal Republic of Germany

Personalised recommendations