pure and applied geophysics

, Volume 144, Issue 3–4, pp 455–470 | Cite as

Linear and nonlinear computations of the 1992 Nicaragua earthquake tsunami

  • Kenji Satake


Numerical computations of tsunamis are made for the 1992 Nicaragua earthquake using different governing equations, bottom frictional values and bathymetry data. The results are compared with each other as well as with the observations, both tide gauge records and runup heights. Comparison of the observed and computed tsunami waveforms indicates that the use of detailed bathymetry data with a small grid size is more effective than to include nonlinear terms in tsunami computation. Linear computation overestimates the amplitude for the later phase than the first arrival, particularly when the amplitude becomes large. The computed amplitudes along the coast from nonlinear computation are much smaller than the observed tsunami runup heights; the average ratio, or the amplification factor, is estimated to be 3 in the present case when the grid size of 1 minute is used. The factor however may depend on the grid size for the computation.

Key words

Tsunami numerical computation finite-difference method Nicaragua earthquake 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, Ku., Abe, Ka., Tsuji, Y. Imamura, F., Katao, H., Ito Y., Satake, K., Bourgeois, J. Noguera, E., andEstrada, F. (1993),Field Survey of the Nicaragua Earthquake and Tsunami of 2 September 1992, Bull. Earthq. Res. Inst., Univ. Tokyo68, 23–70 (in Japanese).Google Scholar
  2. Aida, I., Tsubokawa, H., andKawaguchi, M. (1988),Numerical Experiments on Behavior of Tsunamis Exceeding the Design Height of a Sea Wall: Case Studies for Matsuzaki, Shizuoka Prefecture and Taro, Iwate Prefecture, Zisin, J. Seismol. Soc. Japan41, 343–350 (in Japanese).Google Scholar
  3. Baptista, A. M., Priest, G. R., andMurty, T. S. (1993),Field Survey of the 1992 Nicaragua Tsunami, Marine Geodesy,16, 169–203.Google Scholar
  4. Baptista, A. M., Westerink, J. J., andTurner, P. J. (1989),Tides in the English Channel and Southern North Sea. A Frequency Domain Analysis Using Model TEA-NL, Adv. Water Resources12, 166–183.Google Scholar
  5. Dronkers, J. J.,Tidal Computations in Rivers and Coastal Waters (North-Holland Publishing Company, 1964).Google Scholar
  6. Ide, S., Imamura, F., Yoshida, Y., andAbe K. (1993),Source Characteristics of the Nicaragua Tsunami Earthquake of September 2, 1992, Geophys. Res. Lett.20, 863–866.Google Scholar
  7. Imamura, F., Shuto, N., Ide S., Yoshida, Y., andAbe, K. (1993),Estimate of the Tsunami Source of the 1992 Nicaragua Earthquake from Tsunami Data, Geophys. Res. Lett.20, 1515–1518.Google Scholar
  8. Kajiura, K. (1984),On Runup of Solitary Waves. Tsunami Engin. Tech. Rep., Tohoku Univ.1, 49–62 (in Japanese).Google Scholar
  9. Kanamori, H., andKikuchi, M. (1993),The 1992 Nicaragua Earthquake: A Slow Tsunami Earthquake Associated with Subducted Sediments, Nature361, 714–716.Google Scholar
  10. Kikuchi, M., andKanamori, H. (1995),Source Characteristics of the 1992 Nicaragua Tsunami Earthquake Inferred from Teleseismic Body Waves, Pure and Appl. Geophys, this issue.Google Scholar
  11. Kowalik, Z., andMurty, T. S.,Numerical Modeling of Ocean Dynamics (World Scientific, 1993).Google Scholar
  12. Kowalik, Z., andWhitmore, P. M. (1991),An Investigation of Two Tsunamis Recorded at Adak, Alaska, Sci. Tsunami Hazards9, 67–83.Google Scholar
  13. Mader, C. L.,Numerical Modeling of Water Waves (Univ. California Press, 1988).Google Scholar
  14. Okada, Y. (1985),Surface Deformation due to Shear and Tensile Faults in a Half-space, Bull Seismol Soc. Am.75, 1135–1154.Google Scholar
  15. Press, W. H., Teukolsky, S. A., Vetterling, W. T., andFlannery, B. P.,Numerical Recipes in FORTRAN: The Art of Scientific Computing (Cambridge Univ. Press, 1992).Google Scholar
  16. Satake, K. (1989),Inversion of Tsunami Waveforms for the Estimation of Heterogeneous Fault Motion of Large Submarine Earthquakes: The 1968 Tokachi-oki and the 1983 Japan Sea Earthquakes, J. Geophys. Res.94, 5627–5636.Google Scholar
  17. Satake, K. (1994),Mechanism of the 1992 Nicaragua Tsunami Earthquake, Geophys. Res. Lett.21, 2519–2522.Google Scholar
  18. Satake, K., Bourgeois, J., Abe, Ku. Abe, Ka., Tsuji, Y., Imamura, F., Iio, Y., Katao, H., Noguera, E., andEstrada, F. (1993),Tsunami Field Survey of the 1992 Nicaragua Earthquake, EOS, Trans. Am. Geophys. Union74, 156–157.Google Scholar
  19. Satake, K., andTanioka, Y., (1995),Generation and Propagation Characteristics of the 1993 Hokkaido Nansei-oki Earthquake Tsunamis, Pure and Appl. Geophys., this issue.Google Scholar
  20. Shuto, N. (1991),Numerical Simulation of Tsunamis — Its Present and Near Future, Natural Hazards4, 171–191.Google Scholar
  21. Synolakis, C. E., andSkjelbreia, J. E. (1993),Evolution of Maximum Amplitude of Solitary Waves on Plane Beaches, J. Waterway, Port, Coastal and Ocean Engin.119, 323–342.Google Scholar
  22. Tadepalli, S., andSynolakis, C. E. (1994),The Runup of N Waves on Sloping Beaches, Proc. R. Soc. Lond. A.445, 99–112.Google Scholar
  23. Titov, V. V., andSynolakis, C. E.,A numerical study of wave runup of the September 2, 1992 Nicaraguan tsunami, Proc. IUGG/IOC Inter. Tsunami Symposium, (Wakayama, Japan, 1993) pp. 627–635.Google Scholar
  24. Velasco, A. A., Ammon, C. J., Lay, T., andZhang, J. (1994),Imaging a Slow Bilateral Rupture with Broadband Seismic Waves: The September 2, 1992 Nicaraguan Tsunami Earthquake, Geophys. Res. Lett.,21, 2629–2632.Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • Kenji Satake
    • 1
  1. 1.Department of Geological SciencesUniversity of MichiganAnn ArborUSA

Personalised recommendations