pure and applied geophysics

, Volume 144, Issue 3–4, pp 427–440

Ocean cable measurements of the tsunami signal from the 1992 Cape Mendocino earthquake

  • D. J. Thomson
  • L. J. Lanzerotti
  • C. G. Maclennan
  • L. V. Medford
Article

Abstract

The movement of the seawater across the earth's magnetic field produces a large-scale motional electric field. Using the Point Arena, California, to Hanauma Bay, Hawaii, unpowered HAW-1 cable, we have studied the geopotential across this distance to look for possible tsunami-induced fields that might have been produced following the April 1992 Cape Mendocino earthquake. We have used a ten-day interval prior to and including the earthquake as a reference for geopotential signals and for geomagnetic activity. We have also used geomagnetic data from Point Arena, Honolulu and Boulder as reference data. The results of the analyses show that there are tsunami-related effects in the cable geopotential data. These are (a) larger voltage prediction errors (residuals) for the interval following the main shock; (b) enhanced (compared to the 10d reference interval) geopotential spectral power following the main shock: two enhancements are larger than geomagnetically-induced spectral power enhancements in the same time interval; and (c) strong evidence for an ∼30 min “echo” in the cable geopotential signal following the main shock.

Key words

Tsunami geopotential geomagnetism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike, H., andYamanouchi, Y. (1962),On the Statistical Estimation of Frequency Response Function, Ann. Inst. Math.14, 23–56.Google Scholar
  2. Chave, A. D., Luther, D. S., Lanzerotti, L. J., andMedford, L. V. (1992),Geoelectric Field Measurements on a Planetary Scale: Oceanographic and Geophysical Applications, Geophys. Res. Lett.,19, 1411.Google Scholar
  3. Chave, A. D., andFilloux, J. H. (1985),Observation and Interpretation of the Seafloor Vertical Electric Field in the Eastern North Pacific, J. Geophys. Res.12, 793.Google Scholar
  4. Chave, A. D., Filloux, J. H., Luther, D. S., Law, L. K. andWhite, A. (1989),Observations of Motional Electromagnetic Field During EMSLAB, J. Geophys. Res.94, 14153.Google Scholar
  5. Chave, A. D., Thomson, D. J., andAnder, M. E. (1987),On the Robust Estimation of Power Spectra, Coherences, and Transfer Functions, J. Geophys. Res.92, 638–48.Google Scholar
  6. Chave, A. D., andThomson, D. J. (1989),Some Comments on Magnetotelluric Response Function Estimation, J. Geophys. Res.94, 14,215–14,225.Google Scholar
  7. Egbert, G. D., andBooker, J. R. (1989),Multivariate Analysis of Geomagnetic Array Data. 1. The Response Space, J. Geophys. Res.94, 14,227–14,247.Google Scholar
  8. Egbert, G. D. (1989),Multivariate Analysis of Geomagnetic Array Data. 2. Random Source Models, J. Geophys. Res.94, 14,249–14,265.Google Scholar
  9. Faraday, M. (1932),Experimental Researches in Electricity, Phil Trans. R. Soc.163.Google Scholar
  10. Filloux, J. H.,Instrumentation and experimental methods for oceanic studies. InGeomagnetism, 1 (ed. J. A. Jacobs) (Academic Press 1987), 143 pp.Google Scholar
  11. González, F. I., Satake, K., Boss, E. G., andMofjeld, H. O. (1995),Offshore and Edgewave Tsunami Modes Generated by the 25 April 1992 Cape Mendocino Earthquake, Pure and Appl. Geophys., this issue.Google Scholar
  12. Goodman, N. R. (1957),On the Joint Estimation of the Spectrum, Cospectrum, and Quadrature Spectrum of Two-dimensional Stationary Gaussian Processes, Scientific Paper 10, Engineering Statistical Laboratory, New York Univ. (Also AD 134919, Defense Technical Information Center).Google Scholar
  13. Kleiner, B., Martin, R. D., andThomson, D. J. (1979),Robust Estimates of Spectra (with discussion), J. Royal Statist. Soc.B41, 313–351.Google Scholar
  14. Lanzerotti, L. J., Thomson, D. J., Meloni, A., Medford, L. V., andMaclennan, C. G. (1986),Electromagnetic Study of the Atlantic Continental Margin Using a Section of a Transatlantic Cable, J. Geophys. Res.B91, 7417–7427.Google Scholar
  15. Lanzerotti, L. J., Medford, L. V., Kraus, J. S., Maclennan, C. G., andHunsucker, R. D. (1992),Measurements of Small Amplitude TIDs Using Parallel, Unpowered Telecommunications Cables, Geophys. Res. Lett.19, 253.Google Scholar
  16. Lanzerotti, L. J., Sayres, C. H., Medford, L. V., Kraus, J. S., Maclennan, C. G., andThomson, D. J. (1993),Statistical Study of Induced Voltages Across Oceanic Telecommunications Cables, Proc. 1992 Solar-Terrestrial Pred. Conf.1, 224.Google Scholar
  17. Larsen, J. C. (1989),Transfer Functions: Smooth Robust Estimates by Least-squares and Remote Reference Methods, Geophys. J.99, 645.Google Scholar
  18. Larsen, J. C., andSanford, T. B. (1985),Florida Current Volume Transports from Voltage Measurements, Science227, 302.Google Scholar
  19. Larsen, J. C. (1992),Transport of the Florida Current at 27° N Derived from Cross-stream Voltages and Profiling Data: Theory and Observations, Phil. Trans. R. Soc. Lond.A338, 169.Google Scholar
  20. Lilley, F. E. M., Filloux, J. H., Mulhearn, P. J., andFerguson, L. J. (1993),Magnetic Signals from an Ocean Eddy, J. Geomagn. Geolectr.45, 403.Google Scholar
  21. Meloni, A., Lanzerotti, L. J., andGregori, G. P. (1983),Induction of Currents in Long Submarine Cables by Natural Phenomena, Rev. Geophys,21, 795.Google Scholar
  22. Munk, W. H., andCartwright, D. E. (1966),Tidal Spectroscopy and Prediction, Phil. Trans. R. Soc. Lond.A259, 533–581.Google Scholar
  23. Oppenheimer, D., Beroza, G., Carver, G., Dengler, L., Eaton, J., Gee, L., González, F., Jayko, A., Li, W. H., Lisowski, M., Magee, M., Marshall, G., Murray, M., McPherson, R., Romanowicz, B., Satake, K., Simpson, R., Somerville, P., Stein, R., andValentine, D. (1993),Cape Mendocino, California, Earthquakes of April 1992: Subduction at the Triple Point, Science261, 433.Google Scholar
  24. Prandle, D., andHarrison, A. J. (1975),Recordings of the Potential Difference across the Port Patrick-Donaghedee Submarine Cable, Rep. Inst. Oceanog. Sci. Bidston Obs.21.Google Scholar
  25. Segawa, J., andToh, H. (1992),Detecting Fluid Circulation by Electric Field Variations at the Nankai Trough, Earth Planet. Sci. Letts.109, 469.Google Scholar
  26. Shumway, R. H.,Applied Statistical Time Series Analysis (Prentice Hall, Englewood Cliffs, NJ 1988).Google Scholar
  27. Sutarno, D., andVozoff, K. (1989),Robust M-estimation of Magnetotelluric Impedance Tensors, Exploration Geophys.20, 383–398.Google Scholar
  28. Thomson, D. J. (1977),Spectrum Estimation Techniques for Characterization and Development of WT4 Waveguide, Bell System Tech. J.56, Part I, 1769–1815, Part II, 1983–2005.Google Scholar
  29. Thomson, D. J. (1982),Spectrum Estimation and Harmonic Analysis, Proc. IEEE,70, 1055–96.Google Scholar
  30. Thomson, D. J., andChave, A. D.,Jackknifed error estimates for spectra, coherences, and transfer functions, Ch. 2. InAdvances in Spectrun Analysis (ed. S. Haykin) (Prentice-Hall 1990).Google Scholar
  31. Thomson, D. J., Lanzerotti, L. J., Medford, L. V., Maclennan, C. G., Meloni, A., andGregori, G. P. (1986),Study of Tidal Periodicities Using a Trans-Atlantic Telecommunications Cable, Geophys. Res. Lett.13, 525.Google Scholar
  32. Wertheim, G. K. (1954),Studies of Electrical Potential Between Key West, Florida, and Havana, Cuba, Trans. AGU35, 872.Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • D. J. Thomson
    • 1
  • L. J. Lanzerotti
    • 1
  • C. G. Maclennan
    • 1
  • L. V. Medford
    • 1
  1. 1.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations