Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The role of the chemical environment in frictional deformation: Stress corrosion cracking and comminution

  • 274 Accesses

  • 51 Citations

Abstract

The roles of chemically assisted crack and fracture propagation and chemically assisted comminution in frictional deformation are evaluated in this study. Double cantilever beam (DCB) crack propagation data are presented which show that the role of pH in chemically assisted fracture, and to a lesser extent the role of ionic concentration are important in stress corrosion cracking. Data on very slow crack growth and the stress corrosion limit are also presented. These data suggest that stress corrosion cracking may play an important role in compound earthquakes and in asperity breakdown in faults. The comminution literature is also reviewed in order to assess the role of chemically assisted comminution in frictional deformation. It appears that chemically assisted comminution may be important at low and high ionic strength because it may reduce the effective viscosity and the shear strength of fault gouge. At intermediate ionic concentration the role of pH, as an agent which enhances crack and fracture propagation, appears to be more important in reducing the coefficient of sliding friction.

This is a preview of subscription content, log in to check access.

References

  1. Anderson, O., andGrew, P. (1977),Stress Corrosion Theory of Crack Propagation with Applications to Geophysics. Rev. Geophys. and Space Phys.15, 77–104.

  2. Atkinson, B. (1979),A Fracture Mechanics Study of Subcritical Tensile Cracking of Quartz in Wet Environments, Pure and Appl. Geophys.117, 1011–1024.

  3. Atkinson, B., andMeredith, P. (1981),Stress Corrosion Cracking of Quartz: A Note on the Influence of the Chemical Environment, Tectonophys. T1–T11.

  4. Barenblatt, G. (1962),The Mathematical Theory of Equilibrium Cracks in Brittle Fracture, Adv. Appl. Mechanics7, 88–96.

  5. Berner, E., andBerner, B.,The Global Water Cycle (Prentice-Hall, Englewood, N.J. 1987).

  6. Charles, S., andHillig, G. (1961),Static Fatigue of Glass, J. Appl. Geophys.29, 1549–1560.

  7. Costin, L. (1983),A Microcrack Model for the Deformation and Faiure of Brittle Rock, J. of Geophys. Res.88, 9485–9482.

  8. Das, S., andScholz, C. (1981),Theory of Time Dependent Rupture in the Earth, J. Geophys. Res.86, 6039–6051.

  9. Deliac, E.,Proc. 29th Rock Mech. Symp. on Rock Mech. (Cundallet al., eds.) (University of Minnesota 1986) pp. 554–562.

  10. Dieterich, J. (1978),Time Dependent Friction and the Mechanics of Stick Slip, Pure and Appl. Geophys.116, 790–806.

  11. Dunning, J., McDonald, S., Douglas, B., andDintaman, C. (1993),The Measurement of the Stress Corrosion Limit of Quartz and Glass, Inter. J. Rock Mech.30 (7), 687–691.

  12. Dunning, J., Douglas, B., andMcDonald, S. (1991),The Role of Kinetic Effects in Static Fatigue of Quartz, Trans. AGU, EOS72, 441.

  13. Dunning, J., Douglas, P., andGoldsby, D. (1989),The Role of Kinetics in Subcritical Crack Growth, Trans. AGU, EOS70, 1304.

  14. Dunning, J., andMiller, M. (1985).Effects of Pore Fluid Chemistry on Stable Sliding of Berea Sandstone, Pure and Appl. Geophys.122, 447–461.

  15. Dunning, J., Petrovski, D., Schuyler, J., andOwens, A. (1984),The Effects of Aqueous Chemical Environments on Crack Propagation in Quartz. J. Geophys. Res.89, 4115–4125.

  16. Dunning, J., Lewis, L., andDunn, D. (1980),Chemomechanical Weakening in the Presence of Surfactants, J. Geophys. Res.69, 862–874.

  17. El Shall, H., Somasundaran, P., andBoshkov. InProc., 12th World Mining Congress (Balkema, 1984).

  18. El Shall, H., andSomasundaran, S. (1984),Mechanics of Slurry Comminution, Powder Technol.38, 272–288.

  19. Evans, B. (1993), M.I.T., Personal communication.

  20. Feucht, L., andLogan, J. (1990),Effects of Chemically Active Solutions on the Shearing Behavior of a Sandstone, Tectonophys.175, 159–176.

  21. Frangiskos, A., andSmith, H. InProc. Int. Mineral Dressing Congress (Stockholm, 1958) pp. 67–79.

  22. Freiman, S. (1984),Effects of the Chemical Environment on Slow Crack Growth in Glasses and Ceramics, J. Geophys. Res.89, 4072–4077.

  23. Fuerstenau, D., Venkataraman, K., andVelankanni, B. (1985),Interfacial Processes in Mineralwater Systems, Int. J. of Miner. Processing5, 261–283.

  24. Griffith, A. (1921),The Theory of Rupture and Flow in Solids, Phil. Trans. Roy. Soc.A221, 163.

  25. Hockey, B., andLawn, B. (1975),Electron Microscopy of Microcracking, J. Mater. Sci.10, 1275–1284.

  26. Ishido, T., andMitzutani, H. (1980),Relationship between Fracture Strength and Zeta Potential, Tectonophys.67, 13–23.

  27. Klimpel, R. (1982),Slurry Rheology Influence on the Performance of Mineral/Coal Grinding, Mining Eng.33, 132–140.

  28. Lawn, B.,Fracture of Brittle Solids, 2nd Ed. (Cambridge University Press, New York 1993) pp. 110–121.

  29. Lawn, B., Roach, D., andThompson, R. (1987),Thresholds and Reversibility in Brittle Cracks, J. Mater. Sci.22, 4036.

  30. Lockner, D. (1993),Room Temperture Creep in Granite, J. of Geophys. Res.98, 475–487.

  31. Manfloy, J., andKlimpel, R. (1980), U.S. Patent #4274, 599.

  32. Martin, R., andDurham, W. (1975),Mechanics of Crack Growth in Quartz, J. Geophys. Res.80, 4837–4844.

  33. McDonald, S., Douglas, B., andDunning, J. (1992),Subcritical Crack Growth in Synthetic Quartz in Aqueous Environments of Varying pH, Trans. AGU, EOS72, 457.

  34. Michalske, T.,The Stress corrosion limit: its measurement and implications. InFracture Mechanics of Ceramics. Vol. 5, (Brandt, Hasselman and Lange, eds.) (Plenum Press, New York 1983) pp. 277–289.

  35. Mott, N. (1948),Brittle Fracture in Mild Steel Plates, Engineering165, 16–19.

  36. Obreimoff, J. (1930),The Splitting Strength of Mica, Proc. Roy. Soc. Lond.A127, 290.

  37. Oner, M. (1981),Grindability of Minerals (Loose translation), MadencilikXX (1–2), 23.

  38. Orowan, E. (1944),The Fatigue of Glass under Stress, Nature154, 341–343.

  39. Parks, G. (1984),Surface and Interfacial Free Energies of Quartz, J. Geophys. Res.89, 3997–4008.

  40. Rhebinder, P., Schreiner, L., andZhigach, K.,Hardness Reducers in Drilling (Acad. of Sci., Moscow, USSR 1944) 67 pp.

  41. Rouquerol, J., andPartyka, S. (1981),Adsorption Isotherms in Silica, J. Chem. Tech. Biotech.31, 584–586.

  42. Scholz, C.,The Mechanics of Earthquakes and Faulting (Cambridge Univ. Press, New York 1990).

  43. Somasundaran, P., andLin, I. (1972),Comminution of Industrial Minerals, Indust. and Ec. Processes Res. Dev.11, 321–328.

  44. Swanson, P. (1984),Subcritical Crack Growth and Other Time-and Environment-dependent Behaviors in Crustal Rocks, J. Geophys. Res.89, 4137–4152.

  45. Westwood, A. (1974),Control and Application of Environmentally Sensitive Fracture Processes, J. Materials Sci.9, 1871–1895.

  46. Wiederhorn, S., andBolz, C. (1970),Stress Corrosion and Fatigue of Glass, J. Am. Ceram. Soc.53, 543–548.

  47. Wiederhorn, S., andJohnson, H. (1972),Effect of pH Electrolyte on Static Fatigue in Glass, J. Am. Ceram. Soc.56, 192–201.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dunning, J., Douglas, B., Miller, M. et al. The role of the chemical environment in frictional deformation: Stress corrosion cracking and comminution. PAGEOPH 143, 151–178 (1994). https://doi.org/10.1007/BF00874327

Download citation

Key words

  • Chemically assisted fracture
  • stress corrosion limit
  • subcritical crack propagation