Skip to main content
Log in

Mechanisms of brittle fracture of rock with pre-existing cracks in compression

  • Fault Mechanics, Rupture Processes, and Fracture: Theory and Observation
  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

Fracture of rocks containing a multitude of pre-existing cracks is considered from both theoretical and experimental points of view, paying attention mainly to the underlying mechanisms. The competition between a number of mechanisms in producing tear or shear type fractures is discussed in relation to the properties of the rock and the system of pre-existing cracks on the one hand and the type of loading on the other hand. First, 2-D theoretical models and experimental results aimed at the explanation and description of brittle fracture under compression are considered. Their insufficiency and the necessity to address the 3-D peculiarities of crack growth in rock are shown on the basis of new experimental results on 3-D crack propagation in transparent rock-like brittle materials under uniaxial compression. The results show that in contrast to the 2-D case, a single 3-D crack cannot propagate any appreciable distance and the loading results in dynamic, burst-like failure of the sample. Possible mechanisms of the routinely observed extensive fracture propagation in rock samples (splitting), as well as the possibility of shear (oblique) fracture in uniaxial compression, are discussed in connection with these experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams, M., andSines, G. (1978),Crack Extension from Flaws in a Brittle Material Subjected to Compression, Tectonophys.49, 97–118.

    Google Scholar 

  • Ashby, M. F., andHallam, S. D. (1986),The Failure of Brittle Solids Containing Small Cracks under Compressive Stress Sta es, Acta Metallurgica34, 497–510.

    Article  Google Scholar 

  • Ashby, M. F., andSammis, C. G. (1990),The Damage Mechanics of Brittle Solids in Compression. Pure and Appl. Geophys.133 (3), 489–521.

    Google Scholar 

  • Barenblatt, G. I., Marin, O. E., Pilipetskii, N. F., andUpadyshev, V. A. (1968),Effect of Stresses on the Orientation of Laser Damage Cracks in Transparent Dielectrics, Soviet Physics JETP,27 (5), 716–717.

    Google Scholar 

  • Brace, W. F., andBombolakis, E. G. (1963),A Note on Brittle Crack Growth in Compression, J. Geophys. Res.68 (12), 3709–3713.

    Google Scholar 

  • Brace, W. F., Paulding, B. M., andScholz, C. (1966),Dilatancy in the Fracture of Crystalline Rocks, J. Geophys. Res.71 (16), 3939–3953.

    Google Scholar 

  • Cannon, N. P., Schulson, E. M., Smith, T. R., andFrost, H. J. (1990),Wing Cracks and Brittle Compressive Fracture, Acta Metall. Mater.38 (10), 1955–1962.

    Google Scholar 

  • Cherepanov, G. P.,Mechanics of Brittle Fracture (McGraw-Hill, New York 1979).

    Google Scholar 

  • Cox, S. J. D., andScholz, C. H. (1988a),On the Formation and Growth of Faults: An Experimental Study, J. Struct. Geology10 (4), 413–430.

    Google Scholar 

  • Cox, S. J. D., andScholz, C. H. (1988b),Rupture Initiation in Shear Fracture of Rocks: An Experimental Study, J. Geophys. Res.93 (B4), 3307–3320.

    Google Scholar 

  • Dey, T. N., andChi-Yuen Wang (1981),Some Mechanisms of Microcrack Growth and Interaction in Compressive Rock Failure, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr.18, 199–209.

    Google Scholar 

  • Du, Y., andAydin, A. (1991),Interaction of Multiple Cracks and Formation of Echelon Crack Arrays, Int. J. Numer. and Analyt. Methods in Geomechanics15, 205–218.

    Google Scholar 

  • Dyskin, A. V., andGermanovich, L. N.,Rockburst model based on cracks growing near free surface. InRockbursts and Seismicity in Mines, Vol. 93, (ed. Young, R. P.) Proc. 3rd Internat. Symp., (Kingston, Ontario, Canada 1993a) pp. 169–173.

  • Dyskin, A. V., andGermanovich, L. N. (1993b),Model of Crack Growth in Microcracked Rock, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr.30 (7), 813–820.

    Google Scholar 

  • Dyskin, A. V., Germanovich, L. N., andSalganik, R. L.,A mechanism of deformation and fracture of brittle rocks. InProc. 32nd U.S. Symp. on Rock Mechanics (A. A. Balkema Publishers, Rotterdam 1991) pp. 181–190.

    Google Scholar 

  • Dyskin, A. V., Germanovich, L. N., andUstinov, K. B.,On the pore-based mechanism of dilatancy and fracture of rocks under compression. InProc. 33rd U.S. Symposium on Rock Mechanics, Santa Fe 1992, pp. 797–806.

  • Dyskin, A. V., Germanovich, L. N., andUstinov, K. B. (1993),Asymptotic Solution for Long Cracks Emanated from a Pore in Compression, Intern. J. Fract.62, 307–324.

    Google Scholar 

  • Dyskin, A. V., andSalganik, R. L. (1987),Model of Dilatancy of Brittle Materials with Cracks under Compression, Mech. Sol.22 (6), 165–173.

    Google Scholar 

  • Entov, V. M., andYagust, V. I. (1975),Experimental Studies of Behavior of Quasi-static Development of Microcracks in Concrete, Mech. Sol.4, 93–103.

    Google Scholar 

  • Fairhurst, C., andCook, N. G. W.,The phenomenon of rock splitting parallel to the direction of maximum compression in the neighborhood of a surface. InProc. First Congress International Society for Rocks Mechanics (Lisbon 1966). Vol. 1, pp. 687–692.

  • Galybin, A. N. (1985),Formations of Cracks on Compressing an Unbounded Brittle Body with a Circular Opening, J. Appl. Math. and Mech.49, 797–799.

    Google Scholar 

  • Germanovich, L. N., andDyskin, A. V. (1988),A Model of Brittle Failure for Materials with Cracks in Uniaxial Loading, Mech. Sol.23 (2), 111–123.

    Google Scholar 

  • Germanovich, L. N., andDyskin, A. V. (1994a),Viral Expansions in Problems of Effective Characteristics. Part I. General Concepts, Mech. Comp. Mat.30 (2).

  • Germanovich, L. N., andDyskin, A. V. (1994b),Viral Expansions in Problems of Effective Characteristics. Part II. Anti-plane Deformation of Fiber Composite. Analysis of Self-consistent Methods, Mech. Comp. Mat.30 (3).

  • Germanovich, L. N., Dyskin, A. V., andTsyrulnikov, M. N. (1990),Mechanism of dilatancy and columnar failure of brittle rocks under uniaxial compression. Transactions (Doklady) of the USSR Academy of Sciences, Earth Science Sections313 (4) 6–10.

    Google Scholar 

  • Germanovich, L. N., Dyskin, A. V., andTsyrulnikov, M. N. (1993),A Model of Brittle Rock Deformations under Compression, Mech. Sol.28 (1), 116–128.

    Google Scholar 

  • Gol'dstein, R. V., Ladygin, V. M., andOsipenko, N. M. (1974),A Model of the Fracture of a Slightly Porous Material under Compression or Tension, Soviet Mining Sciences,10, 1–9.

    Google Scholar 

  • Gol'dstein, R. V., andKaptsov, A. V. (1982),The Formation of Structures of Fracture by Low-interacting Cracks, Mech. Sol.17 (4), 157–166.

    Google Scholar 

  • Griffith, A. A. (1924),The Theory of Rupture, Proc. 1st Int. Congr. on Applied Mech., Delft, 55–63.

  • Hoek, E., andBieniawski, Z. T. (1965),Brittle Fracture Propagation in Rock under Compression, Int. J. Fract.1, 137–155.

    Google Scholar 

  • Hopper, R. W., andUhlmann, D. R. (1970),Mechanism of Inclusion Damage in Laser Glass, J. Appl. Phys.41 (10), 4023–4037.

    Google Scholar 

  • Horii, H., andNemat-Nasser, S. (1985),Compression-induced Microcrack Growth in Brittle Solids: Axial Splitting and Shear Failure, J. Geophys. Res.90 (B4), 3105–3125.

    Google Scholar 

  • Horii, H., andNemat-Nasser, S. (1986),Brittle Failure in Compression: Splitting, Faulting, and Brittle-ductile Transition, Phil. Trans. R. Soc. Lond. A319, 337–374.

    Google Scholar 

  • Huang Jiefan, Chen Ganglin, Zhao Yonghong, andWang Ren (1990),An Experimental Study of the Strain Field Development Prior to Failure of a Marble Plate under Compression, Tectonophys.175, 269–284.

    Google Scholar 

  • Ingraffea, A. R., andHeuze, F. E. (1980),Finite Element Models for Rock Fracture Mechanics, Int. J. Numer. and Analit. Methods in Geomech.4, 25–43.

    Google Scholar 

  • Ingraffea, A. R., andSchmidt, R. A.,Experimental verification of a fracture mechanics model for tensile strength prediction of Indiana limestone. InProc. 19th U.S. Symposium on Rock Mechanics, (University of Nevada, Reno) 1978, pp. 243–246.

    Google Scholar 

  • Isida, M., andNemat-Nasser, S. (1987),A Unified Analysis of Various Problems Relating to Circular Holes with Edge Cracks, Eng. Fract. Mech.27 (5), 571–591.

    Google Scholar 

  • Kemeny, J., andCook, N. G. W.,Micromechanics of Deformation in Rock. Toughening Mechanism in Quasi-brittle Materials (Kluwer Academic Publishers, Netherlands 1991) pp. 155–188.

    Google Scholar 

  • Kovalenko, Yu. F., Salganik, R. L., Sidorin, Y. V., andCherstvov, E. V. (1984),Study of the State of the Medium in a Laser Crack and the Mechanism of the Crack Growth in a Transparent Polymer Material, Soviet Physics Doklady29, 941–943.

    Google Scholar 

  • Kranz, R. L. (1979a),Crack Growth and Development during Creep of Barre Granite, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr.16, 23–35.

    Google Scholar 

  • Kranz, R. L. (1979b),Crack-crack and Crack-pore Interactions in Stressed Granite, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr.16, 37–47.

    Google Scholar 

  • Lamkin, S. J., Wawrzysgnek, P. A., andIngraffea, A. R.,Two-dimensional numerical simulation of interacting fractures in rock. InFracture of Concrete and Rock: Recent Developments (eds. Shah, S. P., Swartz, S. E., and Barr, B.) (Elsevier Applied Science, London and New York 1989), pp. 121–131.

    Google Scholar 

  • Lockner, D. A., Moore, D. E., andReches, Z.,Microcrack interaction leading to shear fracture. InRock Mechanics (eds. Tillerson, J. R., and Wawersik, W. R.) (Balkema, Rotterdam 1992), pp. 807–816.

    Google Scholar 

  • Melin, S. (1983),Why Do Cracks Avoid Each Other? Int. J. Fract.23 (1), 37–45.

    Google Scholar 

  • Murakami, Y.,Stress Intensity Factors Handbook, vol. 1 (Pergamon Press, Oxford, New York 1987).

    Google Scholar 

  • Nemat-Nasser, S., andHorii, H. (1982),Compression-induced Nonplanar Crack Extension with Application to Splitting, Exfoliation, and Rockburst, J. Geophys. Res.87, (B8), 6805–6821.

    Google Scholar 

  • Paul, B.,Macroscopic criteria for plastic flow and britle fracture. InFracture. An Advanced Treatise (ed. Liebowitz, H.) (Academic Press, New York and London 1968) Vol. II, pp. 313–496.

    Google Scholar 

  • Peng, S., andJohnson, A. M. (1972),Crack Growth and Faulting in Cylindrical Specimens of Chelmsford Granite, Int. J. Rock. Mech. Min. Sci. and Geomech. Abstr.9, 37–86.

    Google Scholar 

  • Rice, J.,The mechanics of earthquake rupture. InPhys. Earth Interior (eds. Dzievonsi, A. M., and Boschi, E.) (North-Holland, Amsterdam 1980) pp. 555–649.

    Google Scholar 

  • Reches, S., andLockner, D. A. (1990),Self-organized Cracking—A Mechanism for Brittle Faulting, EOS, AGU71, 1586.

    Google Scholar 

  • Salganik, R. L. (1973),Mechanics of Bodies with Many Cracks, Mech. Solids8 (4), 135–143.

    Google Scholar 

  • Sammis, C. G., andAshby, M. F. (1986),The Failure of Brittle Porous Solids under Compressive Stress States, Acta Metallurgica34 (3), 511–526.

    Article  Google Scholar 

  • Sangha, C. M., Talbot, C. J., andDhir R. K. (1974),Microfracturing of a Sandstone in Uniaxial Compression, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr.11 (3), 107–113.

    Google Scholar 

  • Sano, O., Ito, I., andTakeda, M. (1981),Influence of Strain Rate on Dilatancy and Strength of Oshima Granite under Uniaxial Compression, J. Geophys. Res.86 (B10), 9299–9311.

    Google Scholar 

  • Scholz, C. H. (1968),Microfracturing and the Inelastic Deformation of Rock in Compression, J. Geophys. Res.73, 1417–1432.

    Google Scholar 

  • Scholz, C. H.,The Mechanics of Earthquakes and Faulting (Cambridge University Press, Cambridge, New York, Sydney 1990).

    Google Scholar 

  • Segall, P., andPollard, D. D. (1980),Mechanics of Discontinuous Faults, J. Geophys. Res.85 (B8), 4337–4350.

    Google Scholar 

  • Spetzler, H., Mitzutani, H., andRummel, F.,Fracture and flow. InAnelasticity in the Earth, Geodyn. Ser., Vol. 4 (ed. Schreyer, W.) (Stuttgart, Germany 1982) pp. 85–93.

  • Steacy, S. J., andSammis, C. G. (1992),A Damage Mechanics Model for Fault Zone Friction, J. Geophys. Res.97 (B1), 587–594.

    Google Scholar 

  • Tada, H., Paris, P. C., andIrwin, G. R.,The Stress Analysis of Cracks. Handbook. Second edition, Vol. II (Paris Productions, Inc. and Del Research Corporation. St. Louis, Missouri 1985).

    Google Scholar 

  • Talonov, A. V., andTulinov, B. M. (1989),Calculation of Strains for Brittle Materials Taking into Account Limiting Failure, J. Appl. Mech. Tech. Phys.30, 470–476.

    Google Scholar 

  • Wiederhorn, S. M. (1969),Fracture Surface Energy of Glass, J. Am. Ceram. Soc.52 (2), 99–105.

    Google Scholar 

  • Wong, T.-F.,Micromechanics of Faulting in Westerly Granite, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr.19, 49–63 (Pergamon Press, Oxfrod, New York, Seoul, Tokyo 1982).

    Google Scholar 

  • Zaitsev, Y.,Crack propogation in a composite material. InFracture Mechanics of Concrete, 1983 pp. 251–299.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Germanovich, L.N., Salganik, R.L., Dyskin, A.V. et al. Mechanisms of brittle fracture of rock with pre-existing cracks in compression. PAGEOPH 143, 117–149 (1994). https://doi.org/10.1007/BF00874326

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00874326

Key words

Navigation