Advertisement

Applied Categorical Structures

, Volume 1, Issue 3, pp 285–295 | Cite as

Hausdorff separation in categories

  • M. Manuel Clementino
Article

Abstract

Considering subobjects, points and a closure operator in an abstract category, we introduce a generalization of the Hausdorff separation axiom for topological spaces: the notion ofT2-object. We discuss the properties ofT2-objects, which depend essentially on the behaviour of points, and finally we relate them to the well-known separated objects.

Mathematics Subject Classifications (1991)

18B30 18A40 54A05 54B30 54D10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Čech:Topological Spaces, revised by Z. Frolík and M. Katětov, Academia, Praha, 1966.Google Scholar
  2. 2.
    M. M. Clementino: Separação e Compacidade em Categorias, Ph.D. Thesis, Universidade de Coimbra, 1992.Google Scholar
  3. 3.
    J. de Vries:Topological Transformation Groups 1, Math. Centre Tracts 65, Mathematisch Centrum, Amsterdam, 1975.Google Scholar
  4. 4.
    D. Dikranjan and E. Giuli: Epimorphisms and cowellpoweredness of epireflective subcategories of Top,Rend. Circ. Mat. Palermo 6 (1986), 121–136.Google Scholar
  5. 5.
    D. Dikranjan and E. Giuli: Closure Operators I,Topology Appl. 27 (1987), 129–143.Google Scholar
  6. 6.
    D. Dikranjan, E. Giuli, and W. Tholen:Closure Operators II, Categorical Topology and Its Relations to Analysis, Algebra and Combinatorics, Proc. of the Prague Int. Conf. 1988 (World Cientific, Singapore-New Jersey-London-Hong Kong), 297–335.Google Scholar
  7. 7.
    L. Fuchs:Infinite Abelian Groups, Vol. I, Academic Press, New York-London, 1970.Google Scholar
  8. 8.
    E. Giuli and M. Hušek: A diagonal theorem for epireflective subcategories of Top and cowellpoweredness,Ann. Mat. Pura Appl. 145 (1986), 337–346.Google Scholar
  9. 9.
    E. Giuli, S. Mantovani, and W. Tholen: Objects with closed diagonals,J. Pure Appl. Algebra 51 (1988), 129–140.Google Scholar
  10. 10.
    H. Herrlich, G. Salicrup, and G. E. Strecker: Factorizations, denseness, separation and relatively compact objects,Topology Appl. 27 (1987), 157–169.Google Scholar
  11. 11.
    I. M. James:Fibrewise Topology, Cambridge University Press, Cambridge, New York, 1989.Google Scholar
  12. 12.
    E. Manes: Compact Hausdorff objects,Topology Appl. 4 (1974), 341–360.Google Scholar
  13. 13.
    D. Pumplün and H. Röhrl: Separated totally convex spaces,Manusc. Math. 50 (1985), 145–183.Google Scholar
  14. 14.
    W. Tholen: Semi-topological functors I,J. Pure Appl. Algebra 15 (1979), 53–73.Google Scholar
  15. 15.
    S. Willard:General Topology, Addison-Wesley Publishing Company Inc., 1970.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • M. Manuel Clementino
    • 1
  1. 1.Departamento de MathemáticaUniversidade de CoimbraCoimbraPortugal

Personalised recommendations