Applied Categorical Structures

, Volume 1, Issue 3, pp 285–295 | Cite as

Hausdorff separation in categories

  • M. Manuel Clementino


Considering subobjects, points and a closure operator in an abstract category, we introduce a generalization of the Hausdorff separation axiom for topological spaces: the notion ofT2-object. We discuss the properties ofT2-objects, which depend essentially on the behaviour of points, and finally we relate them to the well-known separated objects.

Mathematics Subject Classifications (1991)

18B30 18A40 54A05 54B30 54D10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Čech:Topological Spaces, revised by Z. Frolík and M. Katětov, Academia, Praha, 1966.Google Scholar
  2. 2.
    M. M. Clementino: Separação e Compacidade em Categorias, Ph.D. Thesis, Universidade de Coimbra, 1992.Google Scholar
  3. 3.
    J. de Vries:Topological Transformation Groups 1, Math. Centre Tracts 65, Mathematisch Centrum, Amsterdam, 1975.Google Scholar
  4. 4.
    D. Dikranjan and E. Giuli: Epimorphisms and cowellpoweredness of epireflective subcategories of Top,Rend. Circ. Mat. Palermo 6 (1986), 121–136.Google Scholar
  5. 5.
    D. Dikranjan and E. Giuli: Closure Operators I,Topology Appl. 27 (1987), 129–143.Google Scholar
  6. 6.
    D. Dikranjan, E. Giuli, and W. Tholen:Closure Operators II, Categorical Topology and Its Relations to Analysis, Algebra and Combinatorics, Proc. of the Prague Int. Conf. 1988 (World Cientific, Singapore-New Jersey-London-Hong Kong), 297–335.Google Scholar
  7. 7.
    L. Fuchs:Infinite Abelian Groups, Vol. I, Academic Press, New York-London, 1970.Google Scholar
  8. 8.
    E. Giuli and M. Hušek: A diagonal theorem for epireflective subcategories of Top and cowellpoweredness,Ann. Mat. Pura Appl. 145 (1986), 337–346.Google Scholar
  9. 9.
    E. Giuli, S. Mantovani, and W. Tholen: Objects with closed diagonals,J. Pure Appl. Algebra 51 (1988), 129–140.Google Scholar
  10. 10.
    H. Herrlich, G. Salicrup, and G. E. Strecker: Factorizations, denseness, separation and relatively compact objects,Topology Appl. 27 (1987), 157–169.Google Scholar
  11. 11.
    I. M. James:Fibrewise Topology, Cambridge University Press, Cambridge, New York, 1989.Google Scholar
  12. 12.
    E. Manes: Compact Hausdorff objects,Topology Appl. 4 (1974), 341–360.Google Scholar
  13. 13.
    D. Pumplün and H. Röhrl: Separated totally convex spaces,Manusc. Math. 50 (1985), 145–183.Google Scholar
  14. 14.
    W. Tholen: Semi-topological functors I,J. Pure Appl. Algebra 15 (1979), 53–73.Google Scholar
  15. 15.
    S. Willard:General Topology, Addison-Wesley Publishing Company Inc., 1970.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • M. Manuel Clementino
    • 1
  1. 1.Departamento de MathemáticaUniversidade de CoimbraCoimbraPortugal

Personalised recommendations