Antonie van Leeuwenhoek

, Volume 67, Issue 3, pp 243–253 | Cite as

Effects of growth conditions on mitochondrial morphology inSaccharomyces cerevisiae

  • Wiebe Visser
  • Edwin A. van Spronsen
  • Nanne Nanninga
  • Jack T. Pronk
  • J. Gijs Kuenen
  • Johannes P. van Dijken
Research Papers


Effects of growth conditions on mitochondrial morphology were studied in livingSaccharomyces cerevisiae cells by vital staining with the fluorescent dye dimethyl-aminostyryl-methylpyridinium iodine (DASPMI), fluorescence microscopy, and confocal-scanning laser microscopy. Cells from respiratory, ethanol-grown batch cultures contained a large number of small mitochondria. Conversely, cells from glucose-grown batch cultures, in which metabolism was respiro-fermentative, contained small numbers of large, branched mitochondria. These changes did not significantly affect the fraction of the cellular volume occupied by the mitochondria. Similar differences in mitochondrial morphology were observed in glucose-limited chemostat cultures. In aerobic chemostat cultures, glucose metabolism was strictly respiratory and cells contained a large number of small mitochondria. Anaerobic, fermentative chemostat cultivation resulted in the large, branched mitochondrial structures also seen in glucose-grown batch cultures. Upon aeration of a previously anaerobic chemostat culture, the maximum respiratory capacity increased from 10 to 70 µmole.min−1.g weight−1 within 10 h. This transition resulted in drastic changes of mitochondrial number, morphology and, consequently, mitochondrial surface area. These changes continued for several hours after the respiratory capacity had reached its maximum. Cyanide-insensitive oxygen consumption contributed ca. 50% of the total respiratory capacity in anaerobic cultures, but was virtually absent in aerobic cultures. The response of aerobic cultures to oxygen deprivation was qualitatively the reverse of the response of anaerobic cultures to aeration. The results indicate that mitochondrial morphology inS. cerevisiae is closely linked to the metabolic activity of this yeast: conditions that result in repression of respiratory enzymes generally lead to the mitochondrial morphology observed in anaerobically grown, fermenting cells.

Key words

mitochondria morphology Saccharomyces cerevisiae vital staining yeast 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agar HD & Douglas HC (1957) Studies on the cytological structure of yeast: electron microscopy of thin sections. J. Bact. 73: 365–375.PubMedGoogle Scholar
  2. Alexander MA & Jeffries TW (1990) Respiratory efficiency and metabolite partitioning as regulatory phenomena in yeasts. Enzyme Microb. Technol. 12: 2–19.Google Scholar
  3. Andreasen AA & Stier TJB (1953) Anaerobic nutrition ofS. cerevisiae. I. Ergosterol requirement for growth in a defined medium. J. Cell. Comp. Physiol. 41: 23–26.Google Scholar
  4. —— (1954) Anaerobic nutrition ofS. cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium. J. Cell. Comp. Physiol. 43: 271–281.Google Scholar
  5. Bereiter-Hahn J (1976) Dimethylaminostyrylmethylpyridiniumiodine (DASPMI) as a fluorescent probe for mitochondriain situ. Biochim. Biophys. Acta 423: 1–14.PubMedGoogle Scholar
  6. Bereiter-Hahn J, Seipel KH, Vöth M & Ploem JS (1983) Fluorometry of mitochondria in cells vitally stained with DASPMI or rhodamine 6 GO. Cell Biochem. and Function 12: 147–155.Google Scholar
  7. Brakenhoff GJ, Blom P & Barends PJ (1979) Confocal scanning light microscopy with high aperture immersion lenses. J. Microsc. 117: 219–232.Google Scholar
  8. Brakenhoff GJ, van der Voort HTM, van Spronsen EA, Linnemans WAM & Nanninga N (1985) Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy. Nature 317: 748–749.PubMedGoogle Scholar
  9. Brakenhof GJ, van Spronsen EA, van der Voort HTM & Nanninga N (1989) Three-dimensional confocal fluorescence microscopy. Meth. Cell Biol. 30: 379–398.Google Scholar
  10. Damsky CH, Nelson WM & Claude A (1969) Mitochondria in anaerobically-grown, lipid-limited brewer's yeast. J. Cell Biol. 43: 174–179.PubMedGoogle Scholar
  11. Damsky CH (1976) Environmentally induced changes in mitochondria and endoplasmic reticulum ofSaccharomyces carlsbergensis yeast. J. Cell Biol. 71: 123–135.PubMedGoogle Scholar
  12. De Winde JH & Grivell LA (1993) Global regulation of mitochondrial biosynthesis inSaccharomyces cerevisiae. Progr. Nucleic Acids Res. Mol. Biol. 46: 51–91.Google Scholar
  13. Fiechter A, Furhmann GF & Käppeli O (1981) Regulation of glucose metabolism in growing yeast cells. Adv. Microbial Physiol. 22: 123–183.Google Scholar
  14. Gancedo C & Serrano R (1989) Energy-yielding metabolism. In: Rose AH & Harrison JS (Eds). The molecular biology of the yeastSaccharomyces. Metabolism and gene expression. Cold Spring Harbor, New York, pp 1–37.Google Scholar
  15. Gélinas P & Goulet J (1991) Morphology of bakers' yeast and dissolved oxygen saturation during fed-batch growth. Lett. Appl. Microbiol. 12: 164–170.Google Scholar
  16. Grimes GW, Mahler HR & Perlman PS (1974) Nuclear gene dosage effects on mitochondrial mass and DNA. J. Cell Biol. 61: 565–574.PubMedGoogle Scholar
  17. Hoffmann HP & Avers CJ (1973) Mitochondrion of yeast: ultrastructural evidence for one giant, branched organelle per cell. Science 181: 749–751.PubMedGoogle Scholar
  18. Huls PG, Nanninga N, van Spronsen EA, Valkenburg JAC, Visscher NOE & Woldringh CL (1992) A computer supported measuring system for the characterization of yeast populations combining 2D-image analysis, Coulter counter and flow cytometry. Biotechn. Bioeng. 39: 343–350.Google Scholar
  19. Kawakami N (1961) Thread-like mitochondria in yeast cells. Expl. Cell Res. 25: 179–181.Google Scholar
  20. Keddie MK & Barajas L (1969) Three-dimensional reconstruction ofPityrosporum yeast cells based on serial section electron microscopy. J. Ultrastruc. Res. 29: 260–275.Google Scholar
  21. Marquardt H (1962) Der Feinbau von Hefezellen im Elektronenmikroskop. II. Mitt.:Saccharomyces cerevisiae — stämme. Z. Naturf. 17B: 689–695.Google Scholar
  22. —— (1963) Elektronenoptische Untersuchungen über die Ascosporenbildung beiSaccharomyces cerevisiae unter cytologischem und cytogenetischem Aspekt. Arch. Mikrobiol. 46: 308–320.PubMedGoogle Scholar
  23. Plattner H & Schatz G (1969) Promitochondria of anaerobically-grown yeast. III. Morphology. Biochemistry 8: 339–343.PubMedGoogle Scholar
  24. Plattner H, Salpeter M, Saltzgaber J, Rouslin W & Schatz G (1971) Pro-mitochondria of anaerobically-grown yeast: evidence for their conversion into functional mitochondria during respiratory adaptation. In: Boardman NK, Linnane AW & Smillie RM (Eds). Autonomy and biogenesis of mitochondria and chloroplasts(pp 175–184). North-Holland Publishing Company, Amsterdam.Google Scholar
  25. Postma E, Verduyn C, Scheffers WA & van Dijken JP (1989) Enzymatic analysis of the Crabtree effect in glucose-limited chemostat cultures ofSaccharomyces cerevisiae. Appl. Environ. Microbiol. 55: 468–477.PubMedGoogle Scholar
  26. Prusso DC & Wells K (1967)Sporobolomyces roseus. I. Ultrastructure. Mycologia 59: 337–348.Google Scholar
  27. Schatz G (1965) Subcellular particles carrying mitochondrial enzymes in anaerobically-grown cells ofSaccharomyces cerevisiae. Biochim. Biophys. Acta 96: 342–345.PubMedGoogle Scholar
  28. Stevens BJ (1977) Variation in number and volume of the mitochondria in yeast according to growth conditions. A study based on serial sectioning and computer graphics reconstitution. Biol. Cellulaire 28: 37–56.Google Scholar
  29. Stevens BJ (1981) Mitochondrial Structure. In: Strathers JS, Jones EW & Broach JR (Eds). The Molecular Biology of the YeastSaccharomyces — Life Cycle and Inheritance (pp 471–504). Cold Spring Harbor, New York.Google Scholar
  30. Van der Voort HTM, Brakenhoff GJ & Baarslag MW (1989) Three-dimensional visualization methods for confocal microscopy. J. Microsc. 153: 123–132.PubMedGoogle Scholar
  31. Van Dijken JP & Scheffers WA (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol. Rev. 32: 199–224.Google Scholar
  32. Van Urk H, Mak PR, Scheffers WA & van Dijken JP (1988) Metabolic responses ofSaccharomyces cerevisiae CBS 8066 andCandida utilis CBS 621 upon transition from glucose limitation to glucose excess. Yeast 4: 283–291.PubMedGoogle Scholar
  33. Verduyn C (1991) Physiology of yeasts in relation to growth yields. Antonie van Leeuwenhock 60: 325–353.Google Scholar
  34. Verduyn C, Postma E, Scheffers WA & van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeast: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8: 501–517.PubMedGoogle Scholar
  35. Von Meyenburg HK (1969) Energetics of the budding cycle ofSaccharomyces cerevisiae during glucose limited aerobic growth. Arch. Microbiol. 66: 289–303.Google Scholar
  36. Weusthuis RA, Adams H, Scheffers WA & van Dijken JP (1993) Energetics and kinetics of maltose transport inSaccharomyces cerevisiae: a continuous-culture study. Appl. Environ. Microbiol. 59: 3102–3109.PubMedGoogle Scholar
  37. Weusthuis RA, Visser W, Pronk JT, Scheffers WA & van Dijken JP (1994) Effects of oxygen limitation on sugar metabolism in yeasts: a continuous-culture study of the Kluyver effect. Microbiology 140: 703–715.PubMedGoogle Scholar
  38. Wickerham LJ (1946) A critical evaluation of the nitrogen assimilation tests commonly used in the classification of yeasts. J. Bacteriol. 52: 293–301.Google Scholar
  39. Wu K & Hesselink L (1988) Computer display of reconstructed 3-D scalar data. Appl. Optics 27: 395–404.Google Scholar
  40. Yotsuyanagi Y (1962) Etudes sur la chondriome de la levure. I. Variation de l'ultrastructure du chondriome au cours du cycle de la croissance aérobie. J. Ultrastructure. Res. 7: 121–140.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Wiebe Visser
    • 1
  • Edwin A. van Spronsen
    • 2
  • Nanne Nanninga
    • 2
  • Jack T. Pronk
    • 1
  • J. Gijs Kuenen
    • 1
  • Johannes P. van Dijken
    • 1
  1. 1.Department of Microbiology and Enzymology, Kluyver Laboratory of BiotechnologyDelft University of TechnologyDelftThe Netherlands
  2. 2.Institute for Molecular Cell Biology, Biocentrum AmsterdamAmsterdamThe Netherlands

Personalised recommendations