Journal of Neurology

, Volume 242, Issue 7, pp 472–477 | Cite as

Lipoic (thioctic) acid increases brain energy availability and skeletal muscle performance as shown by in vivo31P-MRS in a patient with mitochondrial cytopathy

  • B. Barbiroli
  • R. Medori
  • H. -J. Tritschler
  • T. Klopstock
  • P. Seibel
  • H. Reichmann
  • S. Iotti
  • R. Lodi
  • P. Zaniol
Original Communication


A woman affected by chronic progressive external ophthalmoplegia and muscle mitochondrial DNA deletion was studied by phosphorus magnetic resonance spectroscopy (31P-MRS) prior to and after 1 and 7 months of treatment with oral lipoic acid. Before treatment a decreased phosphocreatine (PCr) content was found in the occipital lobes, accompanied by normal inorganic phosphate (Pi) level and cytosolic pH. Based on these findings, we found a high cytosolic adenosine diphosphate concentration [ADP] and high relative rate of energy metabolism together with a low phosphorylation potential. Muscle MRS showed an abnormal work-energy cost transfer function and a low rate of PCr recovery during the post-exercise period. All of these findings indicated a deficit of mitochondrial function in both brain and muscle. Treatment with 600 mg lipoic acid daily for 1 month resulted in a 55% increase of brain [PCr], 72% increase of phosphorylation potential, and a decrease of calculated [ADP] and rate of energy metabolism. After 7 months of treatment MRS data and mitochondrial function had improved further. Treatment with lipoate also led to a 64% increase in the initial slope of the work-energy cost transfer function in the working calf muscle and worsened the rate of PCr resynthesis during recovery. The patient reported subjective improvement of general conditions and muscle performance after therapy. Our results indicate that treatment with lipoate caused a relevant increase in levels of energy available in brain and skeletal muscle during exercise.

Key words

Mitochondrial cytopathy Lipoate treatment Brain bioenergetics Muscle energy metabolism Magnetic resonance spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Argov Z, Bank WJ, Maris J, Chance B (1987) Muscle energy metabolism in McArdle's syndrome by in vivo phosphorus magnetic resonance spectroscopy. Neurology 37:1720–1724PubMedGoogle Scholar
  2. 2.
    Argov Z, Bank WJ, Maris J, Peterson P, Chance B (1987) Bioenergetic heterogeneity of human mitochondrial myopathies: phosphorus magnetic resonance spectroscopy study. Neurology 37:257–262PubMedGoogle Scholar
  3. 3.
    Arnold DL, Matthews PM, Radda GK (1984) Metabolic recovery after exercise and the assesment of mitochondrial function in human skeletal muscle in vivo by means of 31P-NMR. Mag Res Med 1:307–315Google Scholar
  4. 4.
    Arnold DL, Taylor DJ, Radda GK (1985) Investigation of human mitochondrial myopathies by phosphorus magnetic resonance spectroscopy. Ann Neurol 18:189–196PubMedGoogle Scholar
  5. 5.
    Barbiroli B, Montagna P, Cortelli P, Martinelli P, Sacquegna T, Zaniol P, Lugaresi E (1990) Complicated migraine studied by phosphorus magnetic resonance spectroscopy. Cephalalgia 10:263–272PubMedGoogle Scholar
  6. 6.
    Barbiroli B, Funicello R, Ferlini A, Montagna P, Zaniol P (1992) Muscle energy metabolism in female DMD/BMD carriers: a 31P-MR study. Muscle Nerve 15:344–348PubMedGoogle Scholar
  7. 7.
    Barbiroli B, Montagna P, Cortelli P, Funicello R, Iotti S, Monari L, Pierangeli G, Zaniol P, Lugaresi E (1992) Abnormal brain and muscle eneigy metabolism shown by31P magnetic resonance spectroscopy in patients affected by migraine with aura. Neurology 42:1209–1214PubMedGoogle Scholar
  8. 8.
    Barbiroli B, Montagna P, Martinelli P, Lodi R, Iotti S, Cortelli P, Funicello R, Zaniol P (1993) Defective brain energy metabolism shown by in vivo 31P MR spectroscopy in 28 patients with mitochondrial cytopathies. J Cereb Blood Flow Metab 13:469–474PubMedGoogle Scholar
  9. 9.
    Bendaham D, Confort-Gouny S, Kozak-Reiss G, Cozzone P (1992) 31P NMR characterization of the metabolic anomalies associated with the lack of glycogen phosphorylase activity in human forearm muscle. Biochem Biophys Res Commun 185:16–21PubMedGoogle Scholar
  10. 10.
    Bendahan D, Desnuelle C, Vanuxem D, Confort-Gouny S, Figarella-Branger D, Pellissier JF, Kozak-Ribbens G, Pouget J, Serratrice G, Cozzone PJ (1992)31P NMR spectroscopy and ergometer test as evidence for muscle oxidative performance improvement with coenzyme Q in mitochondrial myopathies. Neurology 42:1203–1208PubMedGoogle Scholar
  11. 11.
    Bottomly PA, Hardy CJ (1989) Rapid, reliable in vivo assay of human phosphate metabolites by nuclear magnetic resonance. Clin Chem 59:392–395Google Scholar
  12. 12.
    Bottomly PA, Foster TH, Darrow RD (1984) Depth-resolved surface-coil spectroscopy (DRESS) for in vivo1H,31P, and13C NMR. J Magn Reson 59:338–342Google Scholar
  13. 13.
    Chance B, Leigh JS Jr, Clark BJ, Maris J, Kent J, Nioka S, Smith D (1985) Control of oxidative phosphorylation and oxygen delivery in human skeletal muscle: a steady-state analysis of the work-energy cost transfer funtion. Proc Natl Acad Sci USA 83:8384–8388Google Scholar
  14. 14.
    Chance B, Leigh JS, Kent J, McCully KK, Nioka S, Clark BJ, Maris JM, Graham T (1986) Multiple controls of oxidative metabolism in living tissues as studied by phosphorus magnetic resonance. Proc Natl Acad Sci USA 83:9458–9462PubMedGoogle Scholar
  15. 15.
    Clark BJ, Smith B, Chance B (1987) Metabolic consequences of oxygen transport studied with phosphorus nuclear magnetic resonance spectroscopy. In: Bryan-Vrown CW, Ayres SM (eds) Oxygen transport and utilization. Society Critical Care Medicine, Fullerton, Calif, pp 144–170Google Scholar
  16. 16.
    Clayton BE, Dobbs RH, Patrick AD (1967) Leigh's subacute necrotizing encephalopathy: clinical and biochemical study with special reference to therapy with lipoate. Arch Dis Childr 42:467–472Google Scholar
  17. 17.
    Cortelli P, Montagna P, Avoni P, Sangiorgi S, Bresolin N, Moggio M, Zaniol P, Mantovani V, Barboni P, Barbiroli B, Lugaresi E (1991) Leber's hereditary optic neuropathy: genetic, biochemical and phosphorus magnetic resonance spectroscopy study in an Italian family. Neurology 41:1211–1215PubMedGoogle Scholar
  18. 18.
    Crome L, Stern J (1967) The pathology of mental retardation. Churchill, London, p 314Google Scholar
  19. 19.
    De Certains JD, Bovee WMMJ, Podo F (eds) (1992) Magnetic resonance spectroscopy in biology and medicine. Pergamon Press, OxfordGoogle Scholar
  20. 20.
    Delivoria-Papadopulos M, Chamce B (1988) In: Guthrie RD (ed) Neonatal Intensive care. Churchill Livingstone, New York, pp 153–179Google Scholar
  21. 21.
    Di Mauro S, Bonilla E, Zeviani M, Nakagawa M, De Vivo DC (1985) Mitochondrial myopathics. Ann Neurol 17:521–538PubMedGoogle Scholar
  22. 22.
    Duboc D, Jehenson P, Tran Din S, Marsac C, Syrota A, Fardeau M (1987) Phosphorus NMR spectroscopy study of muscular enzyme deficiencies involving glycogenolysis and glycolysis. Neurology 37:663–671PubMedGoogle Scholar
  23. 23.
    Dubowitz V (1985) Muscle Biopsy: a practical approach. Bailliere Tindall, EastbourneGoogle Scholar
  24. 24.
    EEC Concerted Research Project (1995) Quality assessment in in vivo NMR spectroscopy. II. A protocol for quality assessment. Magn Reson Imaging 13 (in press)Google Scholar
  25. 25.
    Eleff S, Kennaway NG, Buist NG, Darley-Usmar VM, Capaldi RA, Bank WJ, Chance B (1984)31P NMR study of improvement in oxidative phosphorylation by vitamin K3 and C in a patient with a defect in electron transport at complex III in skeletal muscle. Proc Natl Acad Sci USA 81:3529–3533PubMedGoogle Scholar
  26. 26.
    Eleff SM, Barker PB, Blackband SJ, Chathman JC, Lutz NW, Johns DR, Bryan RN, Hurko O (1990) Phosphorus magnetic resonance spectroscopy of patients with mitochondrial cytopathies demonstrates decreased levels of brain phosphocreatine. Ann Neurol 27:626–630PubMedGoogle Scholar
  27. 27.
    Haugaard N, Haugaard ES (1970) Stimulation of glucose utilization by thioctic acid in rat diphragm in vitro. Biochim Biophys Acta 222:583–586PubMedGoogle Scholar
  28. 28.
    Hommes FA, Polman HA, Reevink JD (1968) Leigh's encephalomyopathy: an inborn error of gluconeogenesis. Arch Dis Child 43:423–426PubMedGoogle Scholar
  29. 29.
    Iotti S, Lodi R, Frassineti C, Zaniol P, Barbiroli B (1993) In vivo assessment of mitochondrial functionality in human gastrocnemius muscle by 31P MRS. The role of pH in the evaluation of phosphocreatine and inorganic phosphate recoveries from exercise. NMR Biomed 6:248–243PubMedGoogle Scholar
  30. 30.
    Maesaka H, Komiya K, Misugi K, Tada K (1976) Hyperalaninemia, hyperpyruvicemia and lactic acidosis due to pyruvate carboxylase deficiency of the liver; treatment with thiamine and lipoic acid. Eur J Pediatr 122:159–168PubMedGoogle Scholar
  31. 31.
    Matalon R, Stumpf DA, Kimberlee M, Hart RD, Parks JK Goodman SJ (1984) Lipoamide dehydrogenase deficiency with primary lactic acidosis: favorable response to treatment with oral lipoic acid. J Pediatr 104:65–69PubMedGoogle Scholar
  32. 32.
    Matthews PM, Allaire C, Shoubridge EA, Karpati G, Carpenter S, Arnold DL (1991) In vivo muscle magnetic resonance spectroscopy in the clinical investigation of mitochondrial disease. Neurology 41:114–120PubMedGoogle Scholar
  33. 33.
    Matthews PM, Ford B, Dandurand RJ, Eidelman DH, O'Connor D, Sherwin A, Karpati G, Andermann F, Arnold DL (1993) Coenzyme Q10 with multiple vitamins is generally ineffective in treatment of mitochondrial diseases. Neurology 43:884–890PubMedGoogle Scholar
  34. 34.
    Montagna P, Gallassi R, Medori R, Govoni E, Zevianoi S, DiMauro S, Lugaresi E, Anderman F (1988) MELAS syndrome: characteristic migrainous epileptic features and maternal transmission. Neurology 38:751–754PubMedGoogle Scholar
  35. 35.
    Montagna P, Martinelli P, Cortelli P, Zaniol P, Lugaresi E, Barbiroli B (1992) Brain31P-magnetic resonance spectroscopy in mitochondrial cytopathies. Ann Neurol 31:451–452PubMedGoogle Scholar
  36. 36.
    Natraj CV, Gandhi VM, Menon KKG (1984) Lipoic acid and diabetes: effect of dihydrolipoic acid administration in diabetic rats and rabbits. J Biosci 6:37–46Google Scholar
  37. 37.
    Nishikawa Y, Takahashi M, Yorifuji S, Nakamura Y, Ueno S, Tarui S, Kozuka T, Nishimura T (1989) Long-term coenzyme Q10 therapy for a mitochondrial encephalopathy with cytochrome C oxidase deficiency: a31P NMR study. Neurology 39:399–403PubMedGoogle Scholar
  38. 38.
    Pernow B, Saltin B (1971) Availability of substrates and capacity for prolonged heavy exercise in man. J Appl Physiol 31:416–422PubMedGoogle Scholar
  39. 39.
    Petroff OAC, Prichard JW, Behar KL, Alger JR, Shulman RG (1985) Cerebral metabolism in hyper- and hypocarbia: 31P and 1H nuclear magnetic resonance studies. Neurology 35:1681–1688PubMedGoogle Scholar
  40. 40.
    Przyrembel H (1987) Therapy of mitochondrial disorders. J Inherit Metab Dis 10:129–146PubMedGoogle Scholar
  41. 41.
    Rice JE, Dunhar B, Lindsay JG (1992) Sequences directing dihydrolipoamide dehydrogenase (E3) binding are located on the 2-oxoglutarate dehydrogenase (E1) component of the mammalian 2-oxoglutarate dehydrogenase multienzyme complex. EMBO J 11:3229–3235PubMedGoogle Scholar
  42. 42.
    Tritschler HJ, Andreetta F, Moraes C, Bonilla E, Amaudo E, Danon MJ, Glass S, Zeyala BM, Vamos E, Teleman-Toppet N, DiMauro S, Schon EA (1992) Mitochondrial myopathy of childhood associated with depletion of mitochondrial DNA. Neurology 42:209–217PubMedGoogle Scholar
  43. 43.
    Veech RL, Lawson JWR, Cornell NW, Krebs HA (1979) Cytosolic phosphorylation potential. J Biol Chem 354:6538–6547Google Scholar
  44. 44.
    Wagh SS, Natraj CV, Menon KKG (1987) Mode of action of lipoic acid in diabetes. J Biosci 11:59–74Google Scholar
  45. 45.
    Wallace DC, Zheng X, Lott MT, Shoffner JM, Hodge JA, Kelly RI, Epstein CM, Hopkins LC (1988) Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of mitochondrial DNA disease. Cell 55:601–610PubMedGoogle Scholar
  46. 46.
    Zaniol P, Serafini M, Ferraresi M, Golinelli R, Bassoli P, Canossi I, Aprilesi GC, Barbiroli B (1992) Muscle31P-MR spectroscopy performed routinely in a clinical environment by a wholebody imager/spectrometer. Phys Med 8:87–91Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • B. Barbiroli
    • 1
  • R. Medori
    • 1
  • H. -J. Tritschler
    • 2
  • T. Klopstock
    • 3
  • P. Seibel
    • 3
  • H. Reichmann
    • 3
  • S. Iotti
    • 1
  • R. Lodi
    • 1
  • P. Zaniol
    • 4
  1. 1.Cattedra di Biochimica Clinica, Istituto di Patologia Speciale Medica “D. Campanacci”Universita' di BolognaBolognaItaly
  2. 2.ASTA MedicaFrankfurt am MainGermany
  3. 3.Neurologische Universitäts-Klinik und Poliklinik im Kopfklinikum, Universität WürzburgWürzburgGermany
  4. 4.Istituto di RadiologiaUniversità di ModenaModenaItaly

Personalised recommendations