Antonie van Leeuwenhoek

, Volume 64, Issue 3–4, pp 231–251 | Cite as

Pseudomonas classification

A new case history in the taxonomy of Gram-negative bacteria
  • Norberto J. Palleroni


Various criteria that have been used in the development of a system of classification ofPseudomonas species, as well as in the precise circumscription of the genus on phenotypic and molecular bases, are discussed.Pseudomonas taxonomy has transcended its own limits by suggesting a general strategy for the definition of taxonomic hierarchies at and above the genus level. A selection of studies on the biochemical and physiological properties of members of the genus is critically examined in relation to the current taxonomic scheme as a frame of reference.

Key words

Pseudomonas classification genotypic and phenotypic characterisation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asselineau J & Lederer E (1961) Chemistry of lipids. Ann. Rev. Biochem. 30: 71–92Google Scholar
  2. Auling G, Busse H-J, Pilz F, Webb L, Kneifel H & Claus D (1991) Rapid differentiation, by polyamine analysis, ofXanthomonas strains from phytopathogenic pseudomonads and other members of the classProteobacteria interacting with plants. Int. J. Syst. Bacteriol. 41: 223–228Google Scholar
  3. Ballard RW, Doudoroff M, Stanier RY & Mandel M (1968) Taxonomy of the aerobic pseudomonads:P. diminuta andP. vesiculare. J. Gen. Microbiol. 53: 349–361Google Scholar
  4. Ballard RW, Palleroni NJ, Doudoroff M, Stanier RY & Mandel M (1970) Taxonomy of the aerobic pseudomonads:Pseudomonas cepacia, P. marginata, P. alliicola, andP. caryophylli. J. Gen. Microbiol. 60: 199–214Google Scholar
  5. Barrett EL, Solanes RE, Tang JS & Palleroni NJ (1986)P. fluorescens biovar V: its resolution into distinct component groups and the relationship of these groups to otherP. fluorescent biovars, toP. putida, and to psychrotrophic pseudomonads associated with food spoilage. J. Gen. Microbiol. 132: 2709–2721Google Scholar
  6. Baumann L & Baumann P (1978) Studies of relationship among terrestrialPseudomonas, Alcaligenes, and enterobacteria by an immunological comparison of glutamine synthetase. Arch. Microbiol. 119: 25–30Google Scholar
  7. Baumann L, Baumann P, Mandel M & Allen RD (1972) Taxonomy of aerobic marine eubacteria. J. Bacteriol. 110: 402–429Google Scholar
  8. Beijerinck MW (1889) Méthode de l'hydrodiffusion dans la gelatine appliquée aux recherches microbiologiques. Arch. Néerl. Sci. 23: 367–372Google Scholar
  9. Boronin AM (1992a) Diversity ofPseudomonas plasmids: To what extent. FEMS Microbiol. Lett. 100: 461–468Google Scholar
  10. —— (1992b). Diversity and relationships ofPseudomonas plasmids. In: Galli E, Silver S & Witholt B (Eds)Pseudomonas. Molecular Biology and Biotechnology (pp 329–340) American Society for Microbiology, Washington, DCGoogle Scholar
  11. Buchanan TM & Pearce WA (1979) Pathogenic aspects of outer membrane components of Gram negative bacteria. In: Inouye M (Eds) Bacterial Outer Membranes. Biogenesis and Function (pp 475–514). John Wiley and Sons, New YorkGoogle Scholar
  12. Busse H-J, El-Banna T & Auling G (1989) Evaluation of different approaches for identification of xenobiotic-degrading pseudomonads. Appl. Environ. Microbiol. 55: 1578–1583Google Scholar
  13. Busse J & Auling G (1988) Polyamine patterns as a chemotaxonomic marker within theProteobacteria. Syst. Appl. Microbiol. 11: 1–8Google Scholar
  14. Byng GS, Whitaker RJ, Gherna RL & Jensen RA (1980) Variable enzymological patterning in tyrosine biosynthesis as a new means of determining natural relatedness amongPseudomonadaceae. J. Bacteriol. 144: 247–257Google Scholar
  15. Byng GS, Johnson JL, Whitaker RJ, Gherna RL & Jensen RA (1983) The evolutionary pattern of aromatic amino acid biosynthesis and the emerging phylogeny of pseudomonad bacteria. J. Mol. Evol. 19: 272–282Google Scholar
  16. Clarke PH (1984) The evolution of degradative pathways. In: Gibson DT (Ed) Microbial Degradation of Organic Compounds (pp 11–27) Marcel Dekker Inc., New YorkGoogle Scholar
  17. Clarke PH & Slater JH (1986) Evolution of enzyme structure and function inPseudomonas. In: Sokatch JR (Ed) The Bacteria. A Treatise on Structure and Function. Volume X (pp 71–144) Academic Press, OrlandoGoogle Scholar
  18. Cohen GN, Stanier RY & Bras G le (1969) Regulation of the biosynthesis of amino acids of the aspartate family in coliform bacteria and pseudomonads. J. Bacteriol. 99: 791–801Google Scholar
  19. Davis DH, Stanier RY, Doudoroff M & Mandel M (1970) Taxonomic studies on some Gram negative polarly flagellated ‘hydrogen bacteria’ and related species. Arch. Microbiol. 70: 1–13Google Scholar
  20. Davis GHG & Park RWA (1962) A taxonomic study of certain bacteria currently classified asVibrio species. J. Gen. Microbiol. 27: 101–119Google Scholar
  21. Dobritsa SV (1985) Restriction analysis of theFrankia ssp. genome. FEMS Microbiol. Lett. 29: 123–128Google Scholar
  22. Doi RH & Igarashi RT (1965) Conservation of ribosomal and messenger ribonucleic acid cistrons inBacillus species. J. Bacteriol. 90: 384–390Google Scholar
  23. Dooren de Jong LE den (1926) Bijdrage tot de kennis van het mineralisatieprocess. Nijgh & Van Ditmar, Rotterdam, pp 1–200Google Scholar
  24. Dubnau D, Smith I, Morell P & Marmur J (1965) Genetic conservation inBacillus species and nucleic acid homologies. Proc. Natl. Acad. Sci. USA 54: 491–498Google Scholar
  25. Festl H, Ludwig W & Schleifer K-H (1986) DNA hybridization probe for thePseudomonas fluorescens group. Appl. Environ. Microbiol. 52: 1190–1194Google Scholar
  26. Fialho AM, Zielinski NA, Fett WF, Chakrabarty AM & Berry A (1990) Distribution of alginate gene sequences in thePseudomonas rRNA homology group I-Azomonas-Azotobacter lineage of superfamily B procaryotes. Appl. Environ. Microbiol. 56: 436–443Google Scholar
  27. Gavini F, Holmes B, Izard D, Beji A, Bernigaud A & Jakubczak E (1989) Numerical taxonomy ofPseudomonas alcaligenes, P. pseudoalcaligenes, P. mendocina, P. stutzeri, and related bacteria. Int. J. Syst. Bacteriol. 39: 135–144Google Scholar
  28. Giesbrecht P, Naumann D, Labischinski H & Barnickel G (1985) A new method for the rapid identification and differentiation of pathogenic microorganisms using Fourier transform infrared spectroscopy. In: Habermehl K-O (Ed) Rapid Methods and Automation in Microbiology and Immunology (pp 198–206) Springer-Verlag, BerlinGoogle Scholar
  29. Goldberg JB, Gorman WL, Flynn JL & Ohman DE (1993) A mutation inalgN permitstrans activation of alginate production byalgT inPseudomonas species. J. Bacteriol. 175: 1303–1308Google Scholar
  30. Goodfellow M, Austin B & Dawson D (1976) Classification and identification of phylloplane bacteria using numerical taxonomy. In: Dickinson CH & Preece TF (Eds) Microbiology of Aerial Plant Surfaces (pp 275–292) Academic Press, LondonGoogle Scholar
  31. Goullet P & Picard B (1991)Pseudomonas aeruginosa isolate typing by esterase electrophoresis. FEMS Microbiol. Lett. 78: 195–200Google Scholar
  32. Govan JRW, Fyfe JAM & Jarman TR (1981) Isolation of alginate-producing mutants ofPseudomonas fluorescens, Pseudomonas putida andPseudomonas mendocina. J. Gen. Microbiol. 125: 217–220Google Scholar
  33. Grothues D & Rudolph K (1991) Macrorestriction analysis of plant pathogenicPseudomonas species and pathovars. FEMS Microbiol. Lett. 79: 83–88Google Scholar
  34. Grothues D & Tümmler B (1991) New approaches in genome analysis by pulsed-field gel electrophoresis: Application to the analysis ofPseudomonas species. Mol. Microbiol. 5: 2763–2776Google Scholar
  35. Hancock REW, Wieczorek AA, Mutharia LM & Poole K (1982) Monoclonal antibodies againstPseudomonas aeruginosa outer membrane antigens: isolation and characterization. Infect. Immun. 37: 166–171Google Scholar
  36. Hancock REW & Chan L (1988) Outer membranes of environmental isolates ofPseudomonas aeruginosa. J. Clin. Microbiol. 26: 2423–2424Google Scholar
  37. Harayama S, Rekik M, Bairoch A, Neidle EL & Ornston LN (1991) Potential DNA slippage structures acquired during evolutionary divergence ofAcinetobacter calcoaceticus chromosomalbenABC andPseudomonas putida TOL pWW0 plasmidxylXYZ, genes encoding benzoate dioxyngenases. J. Bacteriol. 173: 7540–7548Google Scholar
  38. Haynes WC & Burkholder WH (1957) Genus IPseudomonas Migula, 1894. In: Breed RS, Murray EGD & Smith NR (Eds) Bergey's Manual of Determinative Bacteriology (pp 89–152) The Williams & Wilkins Company, BaltimoreGoogle Scholar
  39. Helm D, Labischinski H, Schallehn G & Naumann D (1991) Classification and identification of bacteria by Fourier-transform infrared spectroscopy. J. Gen. Microbiol. 137: 69–79Google Scholar
  40. Hildebrand DC, Huisman OC & Schroth MN (1984) Use of DNA hybridization values to construct three-dimensional models of fluorescent pseudomonad relationships. Can. J. Microbiol. 30: 306–315Google Scholar
  41. Hills GM (1940) Ammonia production by pathogenic bacteria. Biochem. J. 34: 1057–1069Google Scholar
  42. Höfle MG (1990) Transfer RNAs as genotypic fingerprints of eubacteria. Arch. Microbiol. 153: 299–304Google Scholar
  43. —— (1992) Rapid genotyping of pseudomonads by using low-molecular-weight RNA profiles. In: Galli E, Silver S & Witholt B (Eds)Pseudomonas. Molecular Biology and Biotechnology (pp 116–126) American Society for Microbiology, Washington, DCGoogle Scholar
  44. Holloway BW, Escuadra MD, Morgan AF, Saffery R & Krishnapillai V (1992) The new approaches to whole genome analysis of bacteria. FEMS Microbiol. Lett. 100: 101–106Google Scholar
  45. Holmes B, Steigerwalt AA, Weaver RE & Brenner DJ (1987)Chryseomonas luteola comb. nov., andFlavimonas oryzihabitans gen. nov., comb. nov.,Pseudomonas-like species from human and clinical specimens and formerly known, respectively, as groups Ve-1 and Ve-2. Int. J. Syst. Bacteriol. 37: 245–250Google Scholar
  46. Horbach I, Naumann D & Fehrenbach F (1991) Simultaneous infections with different serogroups ofLegionella pneumophila investigated by routine methods and Fourier-Transform infrared spectroscopy. J. Gen. Microbiol. 137: 69–79Google Scholar
  47. Iizuka H & Komagata K (1963) An attempt at grouping of the genusPseudomonas. J. Gen. Appl. Microbiol. 9: 73–82Google Scholar
  48. Ikemoto S, Kuraishi H, Komagata K, Ajuma R, Suto T & Murooka H (1978) Cellular fatty acid composition inPseudomonas species. J. Gen. Appl. Microbiol. 24: 199–213Google Scholar
  49. Jacoby GA (1986) Resistance plasmids ofPseudomonas. In: Sokatch JR (Ed) The Bacteria. A Treatise on Structure and Function. Volume X. The Biology ofPseudomonas (pp 265–293) Academic Press Inc., OrlandoGoogle Scholar
  50. Jann A, Matsumoto H & Haas D (1988) The fourth arginine catabolic pathway ofPseudomonas aeruginosa. J. Gen. Microbiol. 134: 1043–1053Google Scholar
  51. Jessen O (1965)Pseudomonas aeruginosa and other green fluorescent pseudomonads. A taxonomic study. Copenhagen, MunksgaardGoogle Scholar
  52. Johnson JL & Palleroni NJ (1989) Deoxyribonucleic acid similarities amongPseudomonas species. Int. J. Syst. Bacteriol. 39: 230–235Google Scholar
  53. Kelln RA & Warren RAJ (1971) Isolation and properties of a bacteriophage lytic for a wide range of pseudomonads. Can. J. Microbiol. 17: 677–682Google Scholar
  54. Kodama K, Kimura N & Komagata K (1985) Two new species ofPseudomonas: P. oryzihabitans isolated from rice paddy and clinical specimens andP. luteola isolated from clinical specimens. Int. J. Syst. Bacteriol. 35: 467–474Google Scholar
  55. Lawson EC, Jonsson CB & Hemming BC (1986) Genotypic diversity of fluorescent pseudomonads as revealed by Southern hybridization analysis with siderophore-related gene probes. In: Swinburne TR (Ed) Iron, Siderophores, and Plant Diseases (pp 315–329) Plenum Press, New YorkGoogle Scholar
  56. Lelliott RA, Billing E & Hayward AC (1966) A determinative scheme for the fluorescent plant pathogenic pseudomonads. J. Appl. Bacteriol. 29: 470–489Google Scholar
  57. Lessie TG & Gaffney T (1986) Catabolic potential ofPseudomonas cepacia. In: Sokatch JR (Ed) The Bacteria. Vol. X. The Biology ofPseudomonas (pp 439–481) Academic Press, OrlandoGoogle Scholar
  58. Lessie TG, Wood MS, Byrne A & Ferrante A (1990) Transposable gene-activating elements inPseudomonas cepacia. In: Silver S, Chakrabarty AM, Iglewski B & Kaplan S (Eds)Pseudomonas: Biotransformation, Pathogenesis and Evolving Biotechnology (pp 279–291) American Society for Microbiology, WashingtonGoogle Scholar
  59. Levin EY & Block K (1964) Absence of sterols in blue-green algae. Nature 202: 90–91Google Scholar
  60. Lysenko O (1961)Pseudomonas — An attempt at a general classification. J. Gen. Microbiol. 25: 379–408Google Scholar
  61. Mandel M (1966) Deoxyribonucleic acid base composition in the genusPseudomonas. J. Gen. Microbiol. 43: 273–292Google Scholar
  62. McClelland M, Jones R, Patel Y & Nelson M (1987) Restriction endonucleases for pulsed field mapping of bacterial genomes. Nucleic Acids Res. 15: 5985–6005Google Scholar
  63. Mielenz JR, Jackson LE, O'Gara F & Shanmugan KT (1979) Fingerprinting bacterial chromosomal DNA with restriction endonucleaseEcoRI_comparison ofRhizobium spp., and identification of mutants. Can. J. Microbiol. 25: 803–807Google Scholar
  64. Misaghi I & Grogan RG (1969) Nutritional and biochemical comparisons of plant-pathogenic and saprophytic fluorescent pseudomonads. Phytopathol. 59: 1436–1450Google Scholar
  65. Molin G & Ternström A (1982) Numerical taxonomy of psychrotrophic pseudomonads. J. Gen. Microbiol. 128: 1249–1264Google Scholar
  66. —— (1986) Phenotypically based taxonomy of psychrotrophicPseudomonas isolated from spoiled meat, water, and soil. Int. J. Syst. Bacteriol. 36: 257–274Google Scholar
  67. Molin G, Ternström A & Ursing J (1986)Pseudomonas lundensis, a new bacterial species isolated from meat. Int. J. Syst. Bacteriol. 36: 339–342Google Scholar
  68. Moss CW & Dees SB (1976) Cellular fatty acids and metabolic products ofPseudomonas species obtained from clinical specimens. J. Clin. Microbiol. 4: 492–502Google Scholar
  69. Mutharia LM & Hancock REW (1986) Monoclonal antibody specific for an outer membrane lipoprotein of thePseudomonas fluorescens branch of the familyPseudomonadaceae. Int. J. Syst. Bacteriol. 35: 530–532Google Scholar
  70. Naumann D (1985) The ultra rapid differentiation and identification of pathogenic bacteria using FT-IR techniques. In: Graselli JG & Cameron DG (Eds) SPIE, Fourier and Computerized Infrared Spectroscopy (pp 268–269) International Society for Optical Engineering. Bellingham, WAGoogle Scholar
  71. Naumann D, Fijala V & Labischinski H (1988a) The differentiation and identification of pathogenic bacteria using FT-IR and multi-variate statistical analysis. Mikrochim. Acta 1: 373–377Google Scholar
  72. Naumann D, Fijala V, Labischinski H & Giesbrecht P (1988b) The rapid differentiation and identification of pathogenic bacteria using Fourier transform infrared spectroscopic and multivariate statistical analysis. J. Molec. Struct. 174: 165–170Google Scholar
  73. Naumann D, Helm D & Labischinski H (1991) Microbiological characterizations by FT-IR spectroscopy. Nature 351: 81–82Google Scholar
  74. Nikaido H & Hancock REW (1986) Outer membrane permeability ofPseudomonas aeruginosa. In: Gunsalus IC & Stanier RY (Eds) The Bacteria: A Treatise on Structure and Function (pp 145–193) Academic Press Inc., New YorkGoogle Scholar
  75. Ornston LN, Houghton JE, Neidle EL & Gregg LA (1990) Subtle selection and novel mutation during evolutionary divergence of the β-ketoadipate pathway. In: Silver S, Chakrabarty AM, Iglewski B & Kaplan S (Eds)Pseudomonas: Biotransformations, Pathogenesis, and Evolving Biotechnology (pp 207–225) American Society for Microbiology, Washington DCGoogle Scholar
  76. Oyaizu H & Komagata K (1983) Groupings ofPseudomonas species on the basis of cellular fatty acid compositions and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J. Gen. Appl. Microbiol. 29: 17–40Google Scholar
  77. Palleroni NJ (1975) General properties and taxonomy of the genusPseudomonas. In: Clarke PH & Richmond MH (Eds) Genetics and Biochemistry ofPseudomonas (pp 1–36) John Wiley & Sons, LondonGoogle Scholar
  78. —— (1978) ThePseudomonas group, Shildon, Meadowfield Press LtdGoogle Scholar
  79. —— (1983) The taxonomy of bacteria. BioScience 33: 370–377Google Scholar
  80. —— (1984) Genus I.Pseudomonas Migula 1894. In: Krieg NR & Holt JG (Eds) Bergey's Manual of Systematic Bacteriology (pp 141–199) The Williams & Wilkins Co., BaltimoreGoogle Scholar
  81. —— (1986) Taxonomy of the pseudomonads. In: Sokatch JR (Ed) The Bacteria. A Treatise on Structure and Function. Volume X (pp 3–25) Academic Press Inc., OrlandoGoogle Scholar
  82. —— (1992a) Introduction to the familyPseudomonadaceae. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer K-H (Eds) The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications (pp 3071–3085) Springer-Verlag, New YorkGoogle Scholar
  83. —— (1992b) Present situation of the taxonomy of the aerobic pseudomonads. In: Galli E, Silver S & Witholt B (Eds)Pseudomonas. Molecular Biology and Biotechnology (pp 105–115) American Society for Microbiology, Washington DCGoogle Scholar
  84. —— (1992c) Human- and animal-pathogenic pseudomonads. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer K-H (Eds) The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications (pp 3068–3103) Springer-Verlag, New YorkGoogle Scholar
  85. Palleroni NJ & Bradbury JF (1993)Stenotrophomonas, a new bacterial genus forXanthomonas maltophilia (Hugh 1980) Swings et al. 1983. Int. J. Syst. Bacteriol. 43: 606–609Google Scholar
  86. Palleroni NJ & Doudoroff M (1971) Phenotypic characterization and deoxyribonucleic acid homologies ofPseudomonas solanacearum. J. Bacteriol. 107: 690–696Google Scholar
  87. Palleroni NJ, Doudoroff M, Stanier RY, Solanes RE & Mandel M (1970) Taxonomy of the aerobic pseudomonads: The properties of thePseudomonas stutzeri group. J. Gen. Microbiol. 60: 215–231Google Scholar
  88. Palleroni NJ, Ballard RW, Ralston E & Doudoroff M (1972) Deoxyribonucleic acid homologies among somePseudomonas species. J. Bacteriol. 110: 1–11Google Scholar
  89. Palleroni NJ, Kunisawa R, Contopoulou R & Doudoroff M (1973) Nucleic acid homologies in the genusPseudomonas. Int. J. Syst. Bacteriol. 23: 333–339Google Scholar
  90. Park RWA (1962) A study of certain heterotrophic polarly flagellate water bacteria:Aeromonas, Pseudomonas andComamonas. J. Gen. Microbiol. 27: 121–133Google Scholar
  91. Patel P, Marrs CF, Mattick JS, Ruehl WW, Taylor RK & Koomey M (1991) Shared antigenicity and immunogenicity of type 4 pilins expressed byPseudomonas aeruginosa, Moraxella bovis, Neisseria gonorrhoeae, Dichelobacter nodosus, andVibrio cholerae. Infect. Immun. 59: 4674–4676Google Scholar
  92. Patel RN & Ornston LN (1976) Immunological comparison of enzymes of the β-ketoadipate pathway. Arch. Microbiol. 110: 27–36Google Scholar
  93. Pecknold PC & Grogan RG (1973) Deoxyribonucleic acid homology groups among phytopathogenicPseudomonas species. Int. J. Syst. Bacteriol. 23: 111–121Google Scholar
  94. Pickett MJ & Pedersen MM (1970) Characterization of saccharolytic non-fermentative bacteria associated with man. Can. J. Microbiol. 16: 351–362Google Scholar
  95. Poole K & Hancock REW (1986) Phosphate-starvation-induced outer membrane proteins of members of the familiesEnterobacteriaceae andPseudomonadaceae: demonstration of immunological cross-reactivity with an antiserum specific for porin protein P ofPseudomonas aeruginosa. J. Bacteriol. 165: 987–993Google Scholar
  96. Prieto M, García-Armesto MR, García-López ML, Alonso C & Otero A (1992) Species ofPseudomonas obtained at 7° C and 30° C during aerobic storage of lamb carcasses. J. Appl. Bacteriol. 73: 317–323Google Scholar
  97. Ralston E, Palleroni NJ & Doudoroff M (1972) Deoxyribonucleic acid homologies of some so-called ‘Hydrogenomonas’ species. J. Bacteriol. 109: 465–466Google Scholar
  98. —— (1973)Pseudomonas pickettii, a new species of clinical origin related toPseudomonas solanacearum. Int. J. Syst. Bacteriol. 23: 15–19Google Scholar
  99. Ralston-Barrett E, Palleroni NJ & Doudoroff M (1976) Phenotypic characterization and deoxyribonucleic acid homologies of thePseudomonas alcaligenes group. Int. J. Syst. Bacteriol. 26: 421–426Google Scholar
  100. Robert-Gero M, Poiret M & Stanier RY (1969) The function of the beta-keto-adipate pathway inPseudomonas acidovorans. J. Gen. Microbiol. 57: 207–214Google Scholar
  101. Rohmer M, Bouvier P & Ourisson G (1979) Molecular evolution of biomembranes: structural equivalents and phylogenetic precursors of sterols. Proc. Natl. Acad. Sci. USA 76: 847–851Google Scholar
  102. Rokosu AA (1983) Immunological relatedness of histidine ammonia-lyases from some species ofPseudomonas: taxonomic implication. Int. J. Biochem. 15: 867–870Google Scholar
  103. Rosenberg H, Ennor AH & Morrison VF (1956) The estimation of arginine. Biochem. J. 63: 153–159Google Scholar
  104. Saint-Onge A, Romeyer F, Lebel P, Masson L & Brousseau R (1992) Specificity of thePseudomonas aeruginosa PAO1 lipoprotein I gene as a DNA probe and PCR target region within thePseudomonadaceae. J. Gen. Microbiol. 138: 733–741Google Scholar
  105. Sands DC, Schroth MN & Hildebrand DC (1970) Taxonomy of phytopathogenic pseudomonads. J. Bacteriol. 101: 9–23Google Scholar
  106. Sayler GS, Hooper SW, Layton AC & King JMH (1990) Catabolic plasmids of environmental and ecological significance (Mini Review). Microb. Ecol. 19: 1–20Google Scholar
  107. Schleifer K-H, Ludwig W, Kraus J & Festl H (1985) Cloned ribosomal ribonucleic acid genes fromPseudomonas aeruginosa as probes for conserved deoxyribonucleic acid sequences. Int. J. Syst. Bacteriol. 35: 231–236Google Scholar
  108. Schleifer KH, Amann R, Lugwig W, Rothemund C, Springer N & Dorn S (1992) Nucleic acid probes for the identification andin situ detection of pseudomonads. In: Galli E, Silver S & Witholt B (Eds)Pseudomonas. Molecular Biology and Biotechnology (pp 127–134) American Society for Microbiology, Washington DCGoogle Scholar
  109. Schöpp W, Toaspern C & Tauchert H (1985) Charakterisierung und Differenzierung fluoreszierender Pseudomonaden mit Hilfe von Substratverwertungsstudien. J. Basic Microbiol. 3: 187–195Google Scholar
  110. Sherris JC, Preston NW & Shoesmith JG (1957) The influence of oxygen on the motility of a strain ofPseudomonas sp.. J. Gen. Microbiol. 16: 86–96Google Scholar
  111. Sherris JC, Shoesmith JG, Parker MT & Breckon D (1959) Tests for the rapid breakdown of arginine by bacteria: their use in the identification of pseudomonads. J. Gen. Microbiol. 21: 389–396Google Scholar
  112. Siehnel R, Martin NL & Hancock REW (1990) Sequence and relatedness in other bacteria of thePseudomonas aeruginosa oprP gene coding for the phosphate-specific porin P. Mol. Microbiol. 4: 831–838Google Scholar
  113. Slade HD, Doughty CC & Slamp WC (1954) The synthesis of high-energy phosphate in the citrulline ureidase reaction by soluble enzymes ofPseudomonas. Arch. Biochem. Biophys. 48: 338–346Google Scholar
  114. Sneath PHA, Stevens M & Sackin MJ (1981) Numerical taxonomy ofPseudomonas based on published records of substrate utilization. Antonie van Leeuwenhoek 47: 423–448Google Scholar
  115. Sorensen B, Falk ES, Wisloff-Nilsen E, Bjorvatn B & Kristiansen BE (1985) Multivariate analysis ofNeisseria DNA restriction endonuclease patterns. J. Gen. Microbiol. 131: 3099–3104Google Scholar
  116. Stalon V & Mercenier A (1984) L-arginine utilization byPseudomonas species. J. Gen. Microbiol. 130: 69–76Google Scholar
  117. Stalon V, Wauven C vander, Momin P & Legrain C (1987) Catabolism of arginine, citrulline and ornithine byPseudomonas and related bacteria. J. Gen. Microbiol. 133: 2487–2495Google Scholar
  118. Stanier RY (1975) Obituary. Michael Doudoroff, 1911–1975. ASM News 41 (10): 737–738Google Scholar
  119. Stanier RY, Palleroni NJ & Doudoroff M (1966) The aerobic pseudomonads: A taxonomic study. J. Gen. Microbiol. 43: 159–271Google Scholar
  120. Stanier RY, Wachter D, Gasser C & Wilson AC (1970) Comparative immunological studies of twoPseudomonas enzymes. J. Bacteriol. 102: 351–362Google Scholar
  121. Stead DE (1992) Grouping of plant-pathogenic and some otherPseudomonas spp. by using cellular fatty acid profiles. Int. J. Syst. Bacteriol. 42: 281–295Google Scholar
  122. Stenström I-M, Zakaria A, Ternström A & Molin G (1990) Numerical taxonomy of fluorescentPseudomonas associated with tomato roots. Antonie van Leeuwenhoek 57: 223–236Google Scholar
  123. Tamaoka J, Ha D & Komagata K (1987) Reclassification ofPseudomonas acidovorans den Dooren de Jong 1926 andPseudomonas testosteroni Marcus and Talalay 1956 asComamonas acidovorans comb. nov. andComamonas testosteroni comb. nov., with an emended description of the genusComamonas. Int. J. Syst. Bacteriol. 37: 52–59Google Scholar
  124. Thornley MJ (1960) The differentiation ofPseudomonas from other Gram-negative bacteria on the basis of arginine metabolism. J. Appl. Bacteriol. 23: 37–52Google Scholar
  125. Timm A & Steinbüchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate byPseudomonas aeruginosa and other fluorescent pseudomonads. Appl. Environ. Microbiol. 56: 3360–3367Google Scholar
  126. Tricot C, Piérard A & Stalon V (1990) Comparative studies on the degradation of guanidino and ureido compounds byPseudomonas. J. Gen. Microbiol. 136: 2307–2317Google Scholar
  127. Ullstrom CA, Siehnel R, Woodruff W, Steinbach S & Hancock REW (1991) Conservation of the gene for outer membrane protein OprF in the familyPseudomonadaceae: Sequence of thePseudomonas syringae oprF gene. J. Bacteriol. 173: 768–775Google Scholar
  128. Vos P de & Ley J de (1983) Intra- and intergeneric similarities ofPseudomonas andXanthomonas ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol. 33: 487–509Google Scholar
  129. Vos P de, Goor M, Gillis M & Ley J de (1985) Ribosomal ribonucleic acid cistron similarities of phytopathogenicPseudomonas species. Int. J. Syst. Bacteriol. 35: 169–184Google Scholar
  130. Vos P de, Landschoot A van, Segers P, Tytgat R, Gillis M, Bauwens M, Rossau R, Goor M, Pot B, Kersters K, Lizzaraga P & Ley J de (1989) Genotypic relationships and taxonomic localization of unclassifiedPseudomonas andPseudomonas-like strains by deoxyribonucleic acid: ribosomal ribonucleic acid hybridizations. Int. J. Syst. Bacteriol. 39: 35–49Google Scholar
  131. Wauven C vander & Stalon V (1985) Occurrence of succinyl derivatives in the catabolism of arginine inPseudomonas cepacia. J. Bacteriol. 164: 882–886Google Scholar
  132. West SEH & Iglewski BH (1988) Codon usage inPseudomonas aeruginosa. Nucleic Acids Res. 16: 9323–9335Google Scholar
  133. Whitaker RJ, Byng GS, Gherna RL & Jensen RA (1981) Comparative allostery of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthetase as an indicator of taxonomic relatedness in pseudomonad genera. J. Bacterial. 145: 752–759Google Scholar
  134. Willems A, Busse J, Goor M, Pot B, Falsen E, Jantzen E, Hoste B, Gillis M, Kersters K, Auling G & Ley J de (1989)Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includesHydrogenophaga flava comb. nov., (formerlyPseudomonas flava),Hydrogenomonas palleronii (formerlyPseudomonas palleronii),Hydrogenomonas pseudoflava (formerlyPseudomonas pseudoflava and ‘Pseudomonas carboxydoflava’) andHydrogenophage taeniospiralis (formerlyPseudomonas taeniospiralis). Int. J. Syst. Bacteriol. 39: 319–333Google Scholar
  135. Willems A Falsen E, Pot B, Jantzen E, Hoste B, Vandamme P, Gillis M, Kersten K & Ley J de (1990)Acidovorax, a new genus forPseudomonas facilis, Pseudomonas delafieldii, E. Falsen (EF) group 13, EF group 16, and several clinical isolates, with the speciesAcidovorax facilis comb. nov.,Acidovorax delafieldii comb. nov., andAcidovorax temperans sp. nov.. Int. J. Syst. Bacteriol. 40: 384–398Google Scholar
  136. Winogradsky S (1945) Principes de la microbiologie oecologique. Une synthèse. 1945. In: Winogradsky S (Ed) Microbiologie du Sol. Problèmes et méthodes. Cinquante Ans de Recherches (pp 839–848) Masson et Cie, Éditeurs, ParisGoogle Scholar
  137. Woese CR (1987) Bacterial evolution. Microbiol. Rev. 51: 221–271Google Scholar
  138. Woese CR, Stackebrandt E, Weisburg WG, Paster BJ, Madigan MT, Fowler VJ, Hahn CM, Blanz P, Gupta R, Nealson KH & Fox GE (1984a) The phylogeny of purple bacteria: the alpha subdivision. Syst. Appl. Microbiol. 5: 315–326Google Scholar
  139. Woese CR, Weisburg WG, Paster BJ, Hahn CM, Tanner RS, Krieg NR, Koops H-P, Harms H & Stackebrandt E (1984b) The phylogeny of purple bacteria: the beta subdivision. Syst. Appl. Microbiol. 5: 327–336Google Scholar
  140. Woese CR, Weisburg WG, Hahn CM, Paster BJ, Zablen LB, Lewis BJ, Macke TJ, Ludwig W & Stackebrand E (1985) The phylogeny of purple bacteria: the gamma subdivision. Syst. Appl. Microbiol. 6: 25–33Google Scholar
  141. Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T & Arakawa M (1992) Proposal ofBurkholderia gen. nov. and transfer of seven species of the genusPseudomonas homology group II to the new genus, with the type speciesBurkholderia cepacia (Palleroni & Holmes 1981) comb. nov.. Microbiol. Immunol 36: 1251–1275Google Scholar
  142. Yamada Y, Takinami-Nakamura H, Tahara Y, Oyaizu H & Komagata K (1982) The ubiquinone systems in the strains ofPseudomonas species. J. Gen. Appl. Microbiol. 28: 7–12Google Scholar
  143. Yorifuji T, Kobayashi T, Tabuchi A, Shiratani Y & Yonoha K (1983) Distribution of amidinohydrolase amongPseudomonas and comparative studies of some purified enzymes by one-dimensional peptide mapping. Agr. Biol. Chem. 47: 2825–2830Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Norberto J. Palleroni
    • 1
  1. 1.Department of MicrobiologyNew York University Medical CentreNew YorkUSA

Personalised recommendations