Antonie van Leeuwenhoek

, Volume 64, Issue 3–4, pp 205–229 | Cite as

Software tools and databases for bacterial systematics and their disseminationvia global networks

  • Vanderlei Perez Canhos
  • Gilson Paulo Manfio
  • Lois D. Blaine


The dynamic expansion of the taxonomic knowledge base is fundamental to further developments in biotechnology and sustainable conservation strategies. The vast array of software tools for numerical taxonomy and probabilistic identification, in conjunction with automated systems for data generation are allowing the construction of large computerised strain databases. New techniques available for the generation of chemical and molecular data, associated with new software tools for data analysis, are leading to a quantum leap in bacterial systematics. The easy exchange of data through an interactive and highly distributed global computer network, such as the Internet, is facilitating the dissemination of taxonomic data. Relevant information for comparative sequence analysis, ribotyping, protein and DNA electrophoretic pattern analysis is available on-line through computerised networks. Several software packages are available for the analysis of molecular data. Nomenclatural and taxonomic ‘Authority Files’ are available from different sources together with strain specific information. The increasing availability of public domain software, is leading to the establishment and integration of public domain databases all over the world, and promoting co-operative research projects on a scale never seen before.

Key words

bacterial systematics databases electronic networks information resources software tools 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahern K (1993) DNA Star/LaserGene. Biotechnology Software, 10: 6–12Google Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ (1990) Basic local alignment search tool. J. Mol. Biol. 215: 403–410Google Scholar
  3. Anonymous (1991a) Sustainable biosphere initiative. Ecology 72: 371–412Google Scholar
  4. Anonymous (1991b) Systematics Agenda 2000: integrating biological diversity and societal needs. System. Zool. 40: 520–523Google Scholar
  5. Bairoch A (1993a) SWISS-PROT and 2D gel databases. Posted (May 1, 1993) at the Scholar
  6. Bairoch A (1993b) List of molecular biology e-mail servers. Version 1. 50/July 30, 1993. Posted at Scholar
  7. Bairoch A (1993c) List of molecular biology FTPservers for databases and software. Version 1. 50/July 30, 1993. Posted at bionews@net.bionetGoogle Scholar
  8. Balows A, Trüper HG, Dworkin M, Harder W & Schleifer K-H (Eds) (1993) The Prokaryotes — A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. 2nd ed. Springer-Verlag, New YorkGoogle Scholar
  9. Bello (1989) Computer applications in microbiology: making sense out of data. ASM New 55: 71–73Google Scholar
  10. Berlyn MB & Letovsky S (1992) Genome-related datasets within theE. coli Genetic Stock Center Database.Nucl. Acids Res. 20: 6143–6151Google Scholar
  11. BIOLOG (1992) BIOLOG Microstation: Automated Bacteria Identification System. BIOLOG Inc., Hayward, USAGoogle Scholar
  12. Bochner BR (1989) Sleuthing out bacterial identities. Nature (London) 339: 157–158Google Scholar
  13. van Bogelen RA, Sankar P, Clark RL, Bogan JA & Nedhardt FC (1992) The gens-protein database ofEscherichia coli: Edition 5. Electrophoresis 13: 1014–1054Google Scholar
  14. Bryant TN (1991) Bacterial Identifier: a Utility for Probrabilistic Identification of Bacteria. Blackwell Scientific Publ., OxfordGoogle Scholar
  15. Brondz I, Olsen I & Sjostrom M (1990) Multivariate analysis of quantitative chemical and enzymic characterization data in classification ofActinobacillus, Haemophilus andPasteurella spp. J. Gen. Microbiol. 136: 507–513Google Scholar
  16. Bryant TN (1987) Programs for evaluating and characterising bacterial taxonomic data. CABIOS 3: 45–48Google Scholar
  17. Bryant TN (1993) A review of probabilistic identification matrices. A compilation of probabilistic bacterial identification matrices. Binary 5: 207–210Google Scholar
  18. Buchanan RE & Gibbons NE (Eds) (1974) Bergey's Manual of Determinative Bacteriology. 8 ed. Williams & Wilkins, BaltimoreGoogle Scholar
  19. Bull AT, Goodfellow M & Slater JH (1992) Biodiversity as a source of innovation in biotechnology. Ann. Rev. Microbiol. 46: 219–252Google Scholar
  20. Burks C, Lawton J & Bell G (1988) The LiMB database. Science 241: 888Google Scholar
  21. Bussard A, Krichevsky MI, & Blaine, LD (1985) An international hybridoma data bank: aims, structure, function. In Macario AJL & Macario EC (Eds) Monoclonal Antibodies Against Bacteria (p. 287–311). Academic Press, OrlandoGoogle Scholar
  22. Canhos VP (1990) The impact of computers on culture collections. In: Sly I, Iijima I & Kirsop BE (Eds) 100 years of culture collections (p. 20–27). Institute for Fermentation, OsakaGoogle Scholar
  23. Canhos VP, Lange DA, Kirsop BE, Ross E & Nandi S (Eds) (1992). Needs and Specifications for a Biodiversity Information Network (265 pp.). United Nations Environment Programme, NairobiGoogle Scholar
  24. Cerf V (1991). Networks. Sci. Amer. 265: 72–84Google Scholar
  25. Cinkosky M, Fickett JW, Gilna P & Burks C (1991) Electronic publishing and GenBank. Science 252: 1273–1277Google Scholar
  26. Colwell RR (1970) Polyphasic taxonomy of the genusVibrio: Numerical taxonomy ofVibrio cholerae, Vibrio parahaemolyticus and relatedVibrio species. J. Bacteriol. 104: 410–433Google Scholar
  27. Cowan ST & Steel KJ (1974) Manual for the Identification of Medical Bacterial. Cambridge University Press, CambridgeGoogle Scholar
  28. Davis AW, Atlas RM & Krichevsky MI (1983) Development of probability matrices for identification of Alaskan marine bacteria. Int. J. System. Bacteriol 33: 803–810Google Scholar
  29. Doolittle RF (Ed) (1990) Molecular evolution: computer analysis of protein and nucleic acid sequences. Meth. Enzymol. 183: 1–736Google Scholar
  30. Gams W, Hennebert GL, Stalpers JA, Janssens D, Schipper MA, Smith J, Yarrow D & Hawksworth DL (1988) Structuring strain data for storage and retrieval of information on fungi and yeast in MINE, the Microbial Information Network Europe. J. Gen. Microbiol. 134: 1667–1689Google Scholar
  31. Garavelli JS (1993) Announcements of the Protein Information Resource. Network Request Service. (29 April 1993)Google Scholar
  32. Goodfellow M & Minnikin DE (Eds) (1985) Chemical Methods in Bacterial Systematics. Academic Press, LondonGoogle Scholar
  33. Goodfellow M & O'Donnell AG (Eds) (1993). Handbook of The New Bacterial Systematics. Academic Press, LondonGoogle Scholar
  34. Goodfellow M, Jones D & Priest FG (Eds) (1985) Computer-assisted Bacterial Systematics. Academic Press, LondonGoogle Scholar
  35. Green D (1992) Public Domain Databases for Networking Biodiversity. On-line contribution to, available through BDT gopherGoogle Scholar
  36. Gurtler V, Wilson VA & Mayall BC (1991) Classification of medically important clostridia using restriction endonuclease site differences of PCR-amplified 16S rDNA. J. Gen. Microbiol. 137: 2673–2679Google Scholar
  37. Gutteridge CS, Vallis L & Macfie HJH (1985) Numerical methods in the classification of micro-organisms by pyrolysis mass spectrometry. In: Goodfellow M, Jones D & Priest F (Eds) Computer-assisted Bacterial Systematics (p. 369–401). Academic Press, LondonGoogle Scholar
  38. Hall HJ (1989) Microbial product discovery in the biotech age. Bio/Technology 7: 427–430Google Scholar
  39. Hawksworth DL (1992) Biodiversity in microorganisms and its role in ecosystem function. In: Solbrig OT, van Emdem HM & Van Oordt PGWJ (Eds). Biodiversity and Global Change (p. 83–94). Monograph no. 8. International Union of Biological Sciences, ParisGoogle Scholar
  40. Hawksworth DL & Colwell RR (1992a). Microbial Diversity 21: Biodiversity amongst microorganisms and its relevance. Biodiv. Conserv. 1: 221–226Google Scholar
  41. Hawksworth DL & Colwell RR (1992b) Biodiversity amongst microorganisms and its relevance. Biology International 24: 11–15Google Scholar
  42. Helm D, Labischinki H, Schallehn G & Naumann D (1991) Classification and identification of bacteria by Fourier-transform infrared spectroscopy. J. Gen. Microbiol. 137: 69–79Google Scholar
  43. Hinojosa-Ahumada M, Swaminathan B, Hunter SB, Cameron DN, Kiehlbauch JA, Wachsmuth IK & Strockbine NA (1991) Restriction fragment length polymorphisms in rRNA operons for subtypingShigella sonnei. J. Clin. Microbiol. 29: 2380–2384Google Scholar
  44. James FC & McCulloch CE (1990) Multivariate analysis in ecology and systematics: panacea or Pandora's Box? Ann. Rev. Ecol. System. 21: 129–166Google Scholar
  45. Jurtshuk RJ, Blick M, Bresser J, Fox GE & Jurtshuk Jr P (1992) Rapidin situ hybridization technique using 16S rRNA segments for detecting and differentiating the closely related Gram-positive organismsBacillus polymyxa andBacillus macerans. Appl. Environ. Microbiol. 58: 2571–2578Google Scholar
  46. Kämpfer P & Kroppenstedt RM (1991) Probabilistic identification of streptomycetes using minituarized physiological tests. J. Gen. Microbiol. 137: 1893–1902Google Scholar
  47. Kämpfer P, Kroppenstedt RM & Dott W (1991) A numerical classification of the generaStreptomyces andStreptoverticillium using miniaturized physiological tests. J. Gen. Microbiol. 137: 1831–1891Google Scholar
  48. Kellogg ST (1989) The state of computers. ASM News 55: 22–25Google Scholar
  49. Kersters K (1985) Numerical methods in the classification of bacteria by protein electrophoresis. In: Goodfellow M, Jones D & Priest F (Eds) Computer-assisted Bacterial Systematics (p. 337–368). Academic Press, LondonGoogle Scholar
  50. Kirsop BE (1988a) Computerized databases for locating microorganisms: Functions and differences of major information resources. MIRCEN Journal 4: 419–424Google Scholar
  51. Kirsop BE (1988b) Microbial Strain Data Network: A service to biotechnology. Internat. Indust. Biotechnol. 8: 24–27Google Scholar
  52. Klinger JM, Stowe RP, Obenhuber DC, Grover TO, Mishra SK & Pierson DL (1992). Evaluation of the Biolog automated microbial identification system. Appl. Environ. Microbiol. 58: 2089–2092Google Scholar
  53. Kohara Y, Akiyama K & Isono K (1987) The physical map of the wholeE. coli chromosome: Application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 50: 495–508Google Scholar
  54. Krebs JR (1992). Evolution and Biodiversity — The New Taxonomy. Published by the Natural Environment Research CouncilGoogle Scholar
  55. Krieg NR (Ed) (1984) Bergey's Manual of Systematic Bacteriology. Vol.1. Williams & Wilkins, BaltimoreGoogle Scholar
  56. Krol E (1992) The whole Internet user's guide and catalog. 1st. ed. O'Keilly & Associates, Inc., Sebastopol (California)Google Scholar
  57. Langham CD, Sneath PHA, Williams, ST & Mortimer, AM (1989a) Detecting aberrant strains in bacterial groups as an aid to constructing databases for computer identification. J. Appl. Bacteriol. 66: 339–352Google Scholar
  58. Langham CD, Williams ST, Sneath PHA & Mortimer AM (1989b) New probability matrix for identification ofStreptomyces. J. Gen. Microbiol. 135: 121–133Google Scholar
  59. Lawton J, Burks C & Martinez F (1989) Overview of LiMB database. Nucl. Acids Res. 17: 5885–5899Google Scholar
  60. Lawton J, Cinkosky M, Mishra S, Fickett J & Burks C (1992) Access to molecular biology databases. Math. Comput. Model. 16: 93–101Google Scholar
  61. Lennette EH, Balows A, Hausler Jr WJ & Shadomy HJ (Eds). (1985) Manual of Clinical Microbiology. American Society for Microbiology, USAGoogle Scholar
  62. Liesack W, Ward N & Stackebrandt E (1991) Strategies for molecular microbial ecological studies. Actinomycetes 2: 63–67Google Scholar
  63. Lipman DJ & Pearson WR (1985) Rapid and sensitive protein similarity searches. Science 227: 1435–1441Google Scholar
  64. Lucchini GM & Altwegg M (1992) rRNA gene restriction patterns as taxonomic tools for the genusAeromonas. Int. J. System. Bacteriol. 42: 384–389Google Scholar
  65. Magee J (1993) Whole organisms fingerprinting In: Goodfellow M & O'Donnell AG (Eds) Handbook of New Bacterial Systematics (p. 383–419). Academic Press, LondonGoogle Scholar
  66. Manfio GP (1993) GelManager for DOS, GelManager for Windows: gel fingerprinting analysis. Binary 5: 114–116Google Scholar
  67. Manafi M, Kneifel W & Bascomb S (1991) Fluorogenic and chromogenic substrates used in bacterial diagnosis. Microbiol. Rev. 55: 335–348Google Scholar
  68. Mauchline WS & Keevil CW (1991) Development of the BIOLOG substrate utilization system for identification ofLegionella spp. Appl. Environ. Microbiol. 57: 3345–3349Google Scholar
  69. McManus C & Krichevsky MI (1992) Self-Instruction Manual for MICRO-ISGoogle Scholar
  70. Medigue C, Bouche JP, Henaut A & Danchin A (1990) Mapping of sequenced genes (700 kbp) in the restriction map of theEscherichia coli chromosome. Mol. Microbiol. 4: 169–187Google Scholar
  71. MIDI (1993) Microbial Identification System. MIDI, Newark, DE, USAGoogle Scholar
  72. Monolou JC (1992) Biodiversity at the molecular level. In: Solbrig OT, Van Emdem HM & Van Oordt PGWJ (Eds). Biodiversity and global change (p. 33–39). Monograph No. 8, International Union of Biological Sciences, ParisGoogle Scholar
  73. Moyer NP, Martinetti G, Luthy-Hottenstein J & Altwegg M (1992) Value of rRNA gene restriction patterns ofAeromonas spp. for epidemiological investigations. Curr. Microbiol. 24: 15–21Google Scholar
  74. Nurisis MJ (1982) SPSS introductory guide: basic statistics and operations. McGraw-Hill, ChicagoGoogle Scholar
  75. O'Brien M & Colwell RR (1987) Characterisation tests for numerical taxonomy studies. In: Colwell RR & Grigorova R (Eds) Methods in Microbiology: Current Methods for Classification and Identification of Microorganims. Vol. 19 (p. 69–104). Academic Press, LondonGoogle Scholar
  76. O'Donnell AG, Minnikin DE & Goodfellow M (1985) Integrated lipid and wall analysis of actinomycetes. In: Goodfellow M & Minnikin DE (Eds). Chemical Methods in Bacterial Systematics (p. 131–143). Academic Press, LondonGoogle Scholar
  77. Olsen GJ, Larsen N & Woese CR (1991) The ribosomal RNA database project. Nucl. Acids Res. 19 (Suppl.): 2017–2021Google Scholar
  78. Payne RW, Lane PW, Ainsley AE, Bicknell KE, Digby PGN, Harding SA, Leech PK, Simpson HR, Todd AD, Verrier PJ, White RP, Gower JC, Wilson GT & Paterson LJ (1989) Genstat 5 Reference Manual. Oxford University Press, OxfordGoogle Scholar
  79. Pearson WR (1990) Rapid and sensitive sequence comparison with FASTP and FASTA. Meth. Enzymol. 183: 63–98Google Scholar
  80. Priest FG & Alexander B (1988) A frequency matrix for probabilistic identification of some bacilli. J. Gen. Microbiol. 134: 3011–3018Google Scholar
  81. Horizon (1992) RAPyD-400 User Manual. Horizon Instruments Ltd. Ghyll Industrial Estate, UKGoogle Scholar
  82. Reid B (1993) Usenet readership report for January 1993. Usenet news listsGoogle Scholar
  83. Rogosa M, Colwell RR & Krichevsky M (1986) Coding Microbiological Data for Computers, Springer-Verlag, New YorkGoogle Scholar
  84. Rossler D, Ludwig W, Schleifer KH, Lin C, McGill TJ, Wisotzkey JD, Jurtshuk Jr. P, & Fox GE (1991) Phylogenetic diversity in the genusBacillus as seen by 16S rRNA sequencing studies. System. Appl. Microbiol. 14: 266–269Google Scholar
  85. Sackin MJ (1987) Computer programs for classification and identification. In: Colwell RR & Grigorova R (Eds) Methods in Microbiology: Current Methods for Classification and Identification of Microorganims. Vol. 19 (p. 459–494). Academic Press, LondonGoogle Scholar
  86. Sackin MJ & Jones (1993) Computer-assisted classification. In: Goodfellow M & O'Donnell AG (Eds) Handbook of New Bacterial Systematics (p. 281–313). Academic Press, LondonGoogle Scholar
  87. Saddler GS, O'Donnell AG, Goodfellow M & Minnikin DE (1987) SIMCA pattern recognition in the analysis of streptomycete fatty acids. J. Gen. Microbiol. 133: 1137–1147Google Scholar
  88. Sanglier J-J, Whitehead D, Saddler GS, Ferguson EV & Goodfellow M (1992) Pyrolysis mass spectrometry as a method for the classification, identification and selection of actinomycetes. Gene 115: 235–242Google Scholar
  89. SAS (1992) SAS Introductory Guide for Personal Computers: release 6.03. SAS, Coorporation, USAGoogle Scholar
  90. Sayler GS & Layton AC (1990) Environmental application of nucleic acid hybridization. Ann. Rev. of Microbiol. 44: 625–648Google Scholar
  91. Schuler GD, Altschul SF & Lipman DJ (1991) A workbench for multiple alignment construction and analysis. Proteins 9: 180–190Google Scholar
  92. Sensititre (1992) Sensititre Operation Manual. Sensititre Corporation, UKGoogle Scholar
  93. Skerman VDB, McGowan V & Sneath PHA (1980). Approved lists of bacterial names. Int. J. System. Bacteriol. 30: 225–420Google Scholar
  94. Smith U R (1993). A Biologist's Guide to Internet. Published monthly in the Usenet Newgroups, bionet.general and news.answers, and archived as file ‘biology/guide’ in the anonymous ftp archive on ‘20 pages’Google Scholar
  95. Sneath PHA (1974) Test reproducibility in relation to identification. Int. J. System. Bacteriol. 24: 508–523Google Scholar
  96. Sneath PHA (1977) A method for testing the distinctness of clusters: a test of the disjunction of two clusters in Euclidean space as measured by their overlap. J. Math. Geol. 9: 123–143Google Scholar
  97. Sneath PHA (1979a) BASIC program for significance test for clusters in UPGMA dendrograms obtained from squared Euclidean distances. Comp. Geosci. 5: 127–137Google Scholar
  98. Sneath PHA (1979b) BASIC program for a significance test for two clusters in Euclidean space as measured by their overlap. Comp. Geosci. 5: 143–155Google Scholar
  99. Sneath PHA (1979c) BASIC program for nonparametric significance of overlap between a pair of clusters using the Kolmogorov-Smirnov test. Comp. Geosci. 5: 173–188Google Scholar
  100. Sneath PHA (1979d) BASIC program for identification of an unknown with presence-absence data against an identification matrix of percent positive characters. Comp. Geosci. 5: 195–213Google Scholar
  101. Sneath PHA (1979e) BASIC program for character separation indices from an identification matrix of percent positive characters. Comp. Geosci. 5: 349–357Google Scholar
  102. Sneath PHA (1980a) BASIC program for the most diagnostic properties of groups from an identification matrix of percent positive characters. Comp. Geosci. 6: 21–26Google Scholar
  103. Sneath PHA (1980b) BASIC program for determining the best identification scores possible from the most typical examples when compared with an identification matrix of percent positive characters. Comp. Geosci. 6: 27–34Google Scholar
  104. Sneath PHA (1980c) BASIC program for determining overlap between groups in an identification matrix of percent positive characters. Comp. Geosci. 6: 267–278Google Scholar
  105. Sneath PHA (Ed) (1986) Bergey's Manual of Systematic Bacteriology. Vol. 2. Williams & Wilkins, BaltimoreGoogle Scholar
  106. Sneath PHA (1989) Analysis and interpretation of sequence data for bacterial systematics: the view of a numerical taxonomist. System. Appl. Microbiol. 12: 15–31Google Scholar
  107. Sneath PHA (1992) International Code of Nomenclature of Bacteria (1990 revision). American Society For Microbiology, Washington.Google Scholar
  108. Sneath PHA & Johnson R (1972) The influence on numerical taxonomic similarities of error in microbiological tests. J. Gen. Microbiol. 72: 377–392Google Scholar
  109. Sneath PHA & Langham CD (1989) OUTLIER: a BASIC program for detecting outlying members of multivariate clusters based on presence-absence data. Comp. Geosci. 15: 939–964Google Scholar
  110. Sneath PHA & Sackin MJ (1979) BASIC program for printing a coding sheet for unknowns that are to be identified against an identification matrix of percent positive characters. Comp. Geosci. 5: 359–367Google Scholar
  111. Sneath PHA & Sokal RR (1973) Numerical Taxonomy. Freeman, San FranciscoGoogle Scholar
  112. Stackebrandt E & Goodfellow M (Eds) (1991) Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons, ChichesterGoogle Scholar
  113. Stackebrandt E, Wunner-Füssl B, Fowler VJ, Schleifer, K-H (1981) Deoxyribonucleic acid homologies and ribosomal ribonucleic acid similarities among sporeforming members of the orderActinomycetales. Int. J. System. Bacteriol. 31: 420–431Google Scholar
  114. Stackebrandt E, Witt D, Kemmerling C, Kroppenstedt R & Liesack W (1991) Designation of streptomycete 16S and 23S rRNA-based target regions for oligonucleotide probes. Appl. Environ. Microbiol. 57: 1468–1477Google Scholar
  115. Ståhl M, Molin A, Ahrné S & Ståhl S (1990) Restriction endonuclease patterns and multivariate analysis as a classification tools forLactobacillus spp. Int. J. System. Bacteriol. 40: 189–193Google Scholar
  116. Staley JT, Bryant MP, Pfleming N & Holt JG (Eds) (1989) Bergey's Manual of Systematic Bacteriology. Vol. 3. Williams & Wilkins, BaltimoreGoogle Scholar
  117. Stalpers JA, Kracht M, Janssens D, DeLey J, Van der Toorn J, Smith J, Claus D & Hippe D (1990) Structuring strain data for storage and retrieval of information on bacteria in MINE, the Microbial Information Network Europe. System. Appl. Microbiol. 13: 92–103Google Scholar
  118. Walczak CA & Krichevsky MI (1982) Computer-aided selection of efficient identification features and calculation of group descriptors as exemplified by data onCapnocytophaga species. Curr. Microbiol. 7: 199–204Google Scholar
  119. Walczak CA, Blaine L & Krichevsky MI, (1988) The CODATA/IUIS Hybridoma Data Bank: development of a hybrid system to handle complex data relationships. Comp. Meth. Progr. Biomed. 88: 275–285Google Scholar
  120. Wayne LG, Krichevsky EJ, Love LL, Johnson R & Krichevsky MI (1980) Taxonomic probability matrix for use with slowly growing mycobacteria. Int. J. System. Bacteriol. 30: 528–538Google Scholar
  121. Willcox WR, Lapage SP & Holmes B (1980) A review of numerical methods in bacterial identification. Antonie van Leeuwenhoek 46: 233–299Google Scholar
  122. Williams DM (1992) DNA analysis: Theory. In: Forey PL, Humphries CH, Kitching IJ, Scotland, RW, Siebert DJ & Williams DM (Eds) Cladistics: A Practical Course in Systematics p. 89–101. Oxford University Press, OxfordGoogle Scholar
  123. Williams ST, Sharpe ME & Holt JG (Eds) (1989) Bergey's Manual of Systematic Bacteriology. Vol. 4. Williams & Wilkins, BaltimoreGoogle Scholar
  124. Williams ST, Locci R, Vickers, Schofield GM, Sneath PHA & Mortimer AM (1985) Probabilistic identification ofStreptoverticillium species J. Gen. Microbiol. 131: 1681–1689Google Scholar
  125. Winker S & Woese CR (1991) A definition of the domainsArchaea, Bacteria andEucarya in terms of small ribosomal RNA-characteristics. System. Appl. Microbiol. 14: 305–310Google Scholar
  126. Wishart D (1987) Clustan User Manual 4th edition. Computing Laboratory University of St. Andrews, Scotland, U KGoogle Scholar
  127. Woese CR, Kandler O & Wheelis ML (1990) Towards a natural system of organisms: proposal for the domainsArchaea, Bacteria andEucarya. Proc. Nat. Acad. Sci. USA 87: 4576–4579Google Scholar
  128. Woods TC, Helsel LO & Swaminathan B (1992) Characterization ofNeisseria meningitidis serogroup C by multilocus enzyme electrophoresis and ribosomal DNA restriction profiles (ribotyping). J. Clin. Microbiol. 30: 132–137Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Vanderlei Perez Canhos
    • 1
  • Gilson Paulo Manfio
    • 2
  • Lois D. Blaine
    • 3
  1. 1.Tropical Data Base (BDT)CampinasBrazil
  2. 2.Tropical Culture Collection (CCT)CampinasBrazil
  3. 3.American Type Culture CollectionRockvilleUSA

Personalised recommendations