Antonie van Leeuwenhoek

, Volume 64, Issue 2, pp 85–107 | Cite as

Genetics of lactobacilli: Plasmids and gene expression

  • Peter H. Pouwels
  • Rob J. Leer


This paper reviews the present knowledge of the structure and properties of small (<5 kb) plasmids present inLactobacillus spp. The data show that plasmids fromLactobacillus spp., like many plasmids from other Gram-positive bacteria, display a modular organization and replicate by a mechanism of rolling circle replication. Structurally, plasmids from lactobacilli are closely related to plasmids from other Gram-positive bacteria. They contain elements (plus- and minus origin of replication, element(s) for control of plasmid replication, mobilization function) showing extensive similarity to analogous elements in plasmids from these other organisms. It is believed that lactobacilli have acquired such elements by intra- and/or intergenic transfer mechanisms. The first part of the review is concluded with a description of plasmid vectors with aLactobacillus replicon and integrative vectors, including data concerning their structural and segregational stability.

In the second part of this review we describe the progress that has been made during the last few years in identifying and characterizing elements that control expression of genetic information in lactobacilli. Based on the sequence of eleven identified and twenty presumed promoters, some preliminary conclusions can be drawn regarding the structure ofLactobacillus promoters. A typicalLactobacillus promoter shows significant similarity to promoters fromE. coli andB. subtilis. An analysis of published sequences of seventy genes indicates that the region encompassing the translation start codon AUG also shows extensive similarity to that ofE. coli andB. subtilis. Codon usage ofLactobacillus genes is not random and shows interspecies as well as intraspecies heterogeneity. Interspecies differences may, in part, be explained by differences in G + C content of different lactobacilli. Differences in gene expression levels can, to a large extent, account for intraspecies differences of codon usage bias. Finally, we review the knowledge that has become available concerning protein secretion and heterologous gene expression in lactobacilli. This part is concluded with a compilation of data on the expression inLactobacillus of heterologous genes under the control of their own promoter or under control of aLactobacillus promoter.

Key words

Lactobacillus plasmid vector DNA replication structural stability segregational stability chromosomal integration transcription promoter antisense RNA translation codon usage protein secretion heterologous gene expression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmad KA & Stewart GSAB (1988) Cloning of thelux genes intoLactobacillus casei andStreptococcus lactis: phosphate-dependent light production. Biochem. Soc. Trans. 1068Google Scholar
  2. Ahn C & Stiles ME (1990) Antibacterial activity of lactic acid bacteria isolated from vacuum-packaged meats. J. Appl. Bacteriol. 69: 302–310PubMedGoogle Scholar
  3. Ahrné S, Molin G & Axelsson L (1992) Transformation ofLactobacillus reuteri with electroporation studies on the erythromycin resistance plasmid pLUL631. Curr. Microbiol. 24: 199–205Google Scholar
  4. Ahrné S, Molin G & Stahl S (1989) Plasmids inLactobacillus isolated from meat and meat products. Syst. Appl. Microbiol. 11: 320–325Google Scholar
  5. Alonso JC & Tailor RH (1987) Initiation of plasmid pC194 replication and its control in Bacillus subtilis. Mol. Gen. Genet. 210: 476–484PubMedGoogle Scholar
  6. Aukrust T & Nes IF (1988) Transformation ofLactobacillus plantarum with the plasmid pTV1 by electroporation. FEMS Microbiol. Lett. 52: 127–132Google Scholar
  7. Axelsson LT, Ahrné SEI, Andersson MC & Stahl SR (1988) Identification and cloning of a plasmid-encoded erythromycin resistance determinant fromLactobacillus reuteri. Plasmid 20: 171–174PubMedGoogle Scholar
  8. Baik BH & Pack MY (1990) Expression of aBacillus subtilis endoglucanase gene inLactobacillus acidophilus. Biotechnol. Lett. 12: 919–924Google Scholar
  9. Bates EEM & Gilbert HJ (1989) Characterization of a cryptic plasmid fromLactobacillus plantarum. Gene 85: 253–258PubMedGoogle Scholar
  10. Bates EEM, Gilbert HJ, Hazlewood GP, Huckle J, Laurie JI & Mann SP (1989) Expression of aClostridium thermocellum endoglucanase gene inLactobacillus plantarum. Appl. Environ. Microbiol. 55: 2095–2097PubMedGoogle Scholar
  11. Belasco JG & Higgins CF (1988) Mechanisms of mRNA decay in bacteria: a perspective. Gene 72: 15–23PubMedGoogle Scholar
  12. Boe L, Gros MF, Riele H te, Ehrlich SD & Gruss A (1989) Replication origins of single-stranded DNA plasmid pUB110. J. Bacteriol. 171: 3366–3372PubMedGoogle Scholar
  13. Boot H, Kolen KPAM, Noort JM van & Pouwels PH (1993) S-layer protein ofLactobacillus acidophilus ATCC 4356: Purification, expression inEscherichia coli, and nucleotide sequence of the corresponding gene. J. Bacteriol. 175: 6089–6096PubMedGoogle Scholar
  14. Bor YC, Moraes C, Lee SP, Crosby WL, Sinskey AJ & Batt CA (1992) Cloning and sequencing theLactobacillus brevis gene encoding xylose isomerase. Gene 114: 127–132PubMedGoogle Scholar
  15. Bouia A, Bringel F, Frey L, Kammerer B, Belarbi A, Goyonvarch A & Hubert JC (1989) Structural organization of pLP-1, a cryptic plasmid fromLactobacillus plantarum CCM 1904. Plasmid 22: 185–192PubMedGoogle Scholar
  16. Bringel F, Frey L & Hubert JC (1989) Characterization, cloning, curing, and distribution in lactic acid bacteria of pLP1, a plasmid fromLactobacillus plantarum CCM 1904 and its use in shuttle vector construction. Plasmid 22: 193–202PubMedGoogle Scholar
  17. Bron S (1990) Plasmids. In: Harwood CR & Cutting SM (Eds) Molecular Biology Methods for Bacillus (pp 75–174) John Wiley & Sons, Chichester UKGoogle Scholar
  18. Bron S & Luxen E (1985) Segregational instability of pUB110-derived recombinant plasmids inBacillus subtilis. Plasmid 14: 235–244PubMedGoogle Scholar
  19. Bron S, Haima P, Belkum M van & Luxen E (1988a) Segregational plasmid instability inBacillus subtilis. In: Ganesan AT & Hoch JA (Eds) Genetics and Biotechnology of Bacilli, Vol. 2 (pp 305–309) Academic Press, Inc., San DiegoGoogle Scholar
  20. Bron S, Luxen E & Swart P (1988b) Instability of recombinant pUB110 plasmids inBacillus subtilis, plasmid-encoded stability function and effects of DNA inserts. Plasmid 19: 231–241PubMedGoogle Scholar
  21. Bhowmik T & Steele JL (1993) Development of an electroporation procedure for gene disruption inLactobacillus helveticus CNRZ 32. J. Gen. Microbiol. (In press)Google Scholar
  22. Brückner R (1992) A series of shuttle vectors forBacillus subtilis andEscherichia coli. Gene 122: 187–192PubMedGoogle Scholar
  23. Chagnaud P, Chion CKNCK, Duran R, Naouri P, Arnaud A & Galzy P (1992) Construction of a new shuttle vector forLactobacillus. Can. J. Microbiol. 38: 69–74PubMedGoogle Scholar
  24. Chassy BM (1985) Prospects for improving economically significantLactobacillus strains by ‘genetic technology’. Trends in Biotechnology 3: 273–275Google Scholar
  25. —— (1987) Prospects for the genetic manipulation of lactobacilli. FEMS Microbiol. Rev. 46: 297–312Google Scholar
  26. Chassy BM, Gibson E & Giuffrida A (1976) Evidence for extrachromosomal elements inLactobacillus. J. Bacteriol. 127: 1576–1578PubMedGoogle Scholar
  27. ——, (1978) Evidence for plasmid-associated lactose metabolism inLactobacillus casei. Current Microbiol. 1: 141–144Google Scholar
  28. Chassy BM & Flickinger JL (1987) Transformation ofLactobacillus casei by electroporation. FEMS Microbiol. Lett. 44: 173–177Google Scholar
  29. Chassy BM, Flickinger JL & Thompson J (1993) The β-galactosidase ofLactobacillus casei is a heterodimer encoded by overlapping genes. J. Bacteriol. SubmittedGoogle Scholar
  30. Chassy BM & Rokaw E (1981) Conjugal transfer of lactose plasmids inLactobacillus casei. In: Levy S, Clowes R & Koenig E (Eds) Molecular Biology, Pathogenesis and Ecology of Bacterial Plasmids (pp 590) Plenum Press, New YorkGoogle Scholar
  31. Chassy BM & Murphy C (1993) The Lactococci and the Lactobacilli. In: Gram Positive Bacteria. American Society for Microbiology (In press)Google Scholar
  32. Chopin MC, Chopin A, Rouault A & Galleron N (1989) Insertion and amplification of foreign genes in theLactococcus lactis subs.lactis chromosome. Appl. Environm. Microbiol. 55: 1769–1774Google Scholar
  33. Christiaens H, Leer RJ, Pouwels PH & Verstraete W (1992) Cloning and expression of a conjugated bile acid hydrolase gene fromLactobacillus plantarum using a direct plate assay. Appl. Environ. Microbiol. 58: 3792–3798PubMedGoogle Scholar
  34. Cocconcelli PS, Gasson MJ, Morelli L & Bottazzi V (1991) Single-stranded DNA plasmid, vector construction and cloning ofBacillus stearothermophilus α-amylase inLactobacillus. Res. Microbiol. 142: 643–652PubMedGoogle Scholar
  35. Collins MD, Phillips BA & Zanoni P (1989) Deoxyribonucleic acid homology studies ofLactobacillus casei, Lactobacillus paracasei sp. nov., subsp.paracasei and subsp.tolerans, andLactobacillus rhamnosus sp. nov., comb. nov. Int. J. Syst. Bacteriol. 39: 105–107Google Scholar
  36. Copeland WC, Domena JD & Robertus JD (1989) The molecular cloning, sequence and expression of thehdc B gene fromLactobacillus 30A. Gene 85: 259–266PubMedGoogle Scholar
  37. Daeschel MA, Andersson RE & Fleming HP (1987) Microbial ecology of fermenting plant materials. FEMS Microbiol. Rev. 46: 357–367Google Scholar
  38. Damiani G, Romagnoli S, Ferretti L, Morelli L, Bottazzi V & Sgaramella V (1987) Sequence and functional analysis of a divergent promoter from a cryptic plasmid ofLactobacillus acidophilus 168S. Plasmid 17: 69–72PubMedGoogle Scholar
  39. Debarbouille M, Martin-Verstraete I, Arnaud M, Klier A & Rapport G (1991) Positive and negative regulation controlling expression of thesac genes inBacillus subtilis. Res. Microbiol. 142: 757–764PubMedGoogle Scholar
  40. Del Solar GH, Puyet A & Esponosa M (1987) Initiation signals for the conversion of single stranded to double stranded DNA forms in the streptococcal plasmid pLS1. Nucleic Acids Res. 15: 5561–5580PubMedGoogle Scholar
  41. Del Solar GH & Espinosa M (1992) The copy number of plasmid pLS1 is regulated by two trans-acting plasmid products-the antisense RNA II and repressor protein, RepA. Mol. Microbiol. 6: 83–94Google Scholar
  42. Deng Z, Keiser T & Hopwood D (1988) ‘Strong incompatibility’ between derivatives of theStreptomyces multicopy plasmid pIJ101. Mol. Gen. Genet. 214: 286–294PubMedGoogle Scholar
  43. Devine KM, Hogan ST, Higgins DG & McConnell DJ (1989) Replication and segregational stability of theBacillus plasmid pBAA1. J. Bacteriol. 171: 1166–1172PubMedGoogle Scholar
  44. Fernandes CF, Shahani KM & Amer MA (1987) Therapeutic role of dietary lactobacilli and lactobacillic fermented dairy products. FEMS Microbiol. Rev. 46: 343–356Google Scholar
  45. Gaier W, Vogel RF & Hammes WP (1992) Cloning and expression of the lysostaphin gene inBacillus subtilis andLactobacillus casei. Lett. Appl. Microbiol. 14: 72–76PubMedGoogle Scholar
  46. Gasson MJ & Anderson PH (1985) High copy number plasmid vectors for use in lactic streptococci. FEMS Microbiol. Lett. 30: 193–196Google Scholar
  47. Gasson MJ (1990)In vivo genetic systems in lactic acid bacteria. FEMS Microbiol. Rev. 87(1–2): 43–60Google Scholar
  48. Gennaro ML, Kornblum J & Novick RP (1987) A site-specific recombination function inStaphylococcus aureus plasmids. J. Bacteriol. 169: 2601–2610PubMedGoogle Scholar
  49. Gerritse K, Posno M, Schellekens MM, Boersma WJA & Claassen E (1991a) Oral administration of TNP-Lactobacillus conjugates in mice: A model for evaluation of mucosal and systemic immune responses and memory formation elicited by transformed lactobacilli. Res. Microbiol. 141: 955–962Google Scholar
  50. Gerritse K, Posno M, Fasbender MJ, Schellekens MM, Boersma WJA & Claassen E (1991b) Mucosal immune responses and systemic immunological memory after oral administration of TNP-Lactobacillus conjugates in mice. Lymphatic tissues andin vivo immune responses. Adv. Exp. Med. & Biol. 84: 497–504Google Scholar
  51. Gilliland SE (1990) Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol. Rev. 87: 175–188Google Scholar
  52. Graves MC & Rabinowitz JC (1986)In vivo andin vitro transcription of theClostridium pasteurianum ferredoxin gene. J. Biol. Chem. 261: 11409–11415PubMedGoogle Scholar
  53. Gruss AD, Ross HF & Novick RP (1987) Functional analysis of a palindromic sequence required for normal replication of several staphylococcal plasmids. Proc. Natl. Acad. Sci. USA 84: 2165–2169PubMedGoogle Scholar
  54. Gruss A & Ehrlich D (1989) The family of highly interrelated single-stranded deoxyribonucleic acid plasmids. Microbiol. Rev. 53: 231–241PubMedGoogle Scholar
  55. Gryczan TJ, Hahn J, Contente S & Dubnau D (1982) Replication and incompatibility properties of plasmid pE194 inBacillus subtilis. J. Bacteriol. 152: 722–735PubMedGoogle Scholar
  56. Gu ZM, Martindale DW & Lee BH (1992) Isolation and complete sequence of thepur L gene encoding FGAM synthase II inLactobacillus casei. Gene 119: 123–126PubMedGoogle Scholar
  57. Gurr MI (1987) Nutritional aspects of fermented milk products. FEMS Microbiol. Rev. 46: 337–342Google Scholar
  58. Hashiba H, Takiguchi R, Jyoho K & Aoyama K (1992) Establishment of a host-vector system inLactobacillus helveticus with β-galactosidase activity as a selection marker. Biosci. Biotechnol. Biochem. 56: 190–194PubMedGoogle Scholar
  59. Heaton MP & Neuhaus FC (1992) Biosynthesis of D-alanyl lipoteichoic acid: cloning, nucleotide sequence and expression of theLactobacillus casei gene for the D-alanine activating enzyme. J. Bacteriol. 174: 4707–4717PubMedGoogle Scholar
  60. Higgins CF, Ames GFL, Barmes WM, Clement JM & Hofnung M (1982) A novel intercistronic regulatory element of prokaryotic operons. Nature 298: 760–762PubMedGoogle Scholar
  61. Hill HA & Hill JE (1986) The value of plasmid profiling in monitoringLactobacillus plantarum in silage fermentations. Curr. Microbiol. 13: 91–94Google Scholar
  62. Hofer F (1977) Involvement of plasmids in lactose metabolism inLactobacillus casei suggested by genetic experiments. FEMS Microbiol. Lett. 1: 167–170Google Scholar
  63. Holck A & Naes H (1992) Cloning, sequencing, and expression of the gene encoding the cell-envelope-associated proteinase fromLactobacillus paracasei subsp.paracasei NCDO 151. J. Gen. Microbiol. 138: 1353–1364PubMedGoogle Scholar
  64. Horinouchi S & Weisblum B (1982a) Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibiotics. J. Bacteriol. 150: 804–814PubMedGoogle Scholar
  65. —— (1982b) Nucleotide sequence and functional map of pC194, a plasmid that specifies chloramphenicol resistance. J. Bacteriol. 150: 815–825PubMedGoogle Scholar
  66. Höttinger H, Ohgi T, Zwahlen M-C, Dhamija S & Soell D (1987) Allele-specific complementation of anEscherichia coli leuB mutation by aLactobacillus bulgaricus tRNA gene. Gene 60: 75–83PubMedGoogle Scholar
  67. Hybsy KO von & Nes IF (1986) Changes in the plasmid profile ofLactobacillus plantarum obtained from commercial meat starter cultures. J. Appl. Bacteriol. 60: 413–417Google Scholar
  68. Ilyina TV & Koonin EV (1992) Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucl. Acids. Res. 20: 3279–3285PubMedGoogle Scholar
  69. Iordanescu S & Projan SJ (1988) Replication termination for staphylococcal plasmids: plasmids pT181 and pC221 crossreact in the termination process. J. Bacteriol. 170: 3427–3434PubMedGoogle Scholar
  70. Ishiwa H & Iwata S (1980) Drug resistance plasmids inLactobacillus fermentum. J. Gen. Appl. Microbiol. 26: 1–74Google Scholar
  71. Iwata M (1988) Characterization of a pAMβ1 deletion derivative isolated fromLactobacillus casei after conjugation. Biochimie 30: 553–558Google Scholar
  72. Jewell B & Collins-Thompson DL (1989) Characterization of chloramphenicol resistance inLactobacillus plantarum catC2. Curr. Microbiol. 19: 343–346Google Scholar
  73. Joerger MC & Klaenhammer TR (1990) Cloning, expression and nucleotide sequence of theLactobacillus helveticus 481 gene encoding the bacteriocin helveticin. J. Bacteriol. 172: 6339–6347PubMedGoogle Scholar
  74. Jones S & Warner PJ (1990) Cloning and expression of alpha-amylase fromBacillus amyloliquefaciens in a stable plasmid vector inLactobacillus plantarum. Lett. Appl. Microbiol. 11: 214–219PubMedGoogle Scholar
  75. Josson K, Scheirlinck T, Michiels F, Platteeuw C, Stanssens P, Joos H, Dhaese P, Zabeau M & Mahillon J (1989) Characterization of a Gram-positive broad-host-range plasmid isolated fromLactobacillus hilgardii. Plasmid 21: 9–20PubMedGoogle Scholar
  76. Josson K, Soetaert P, Michiels F, Joos H & Mahillon J (1990)Lactobacillus hilgardii plasmid pLAB1000 consists of two functional cassettes commonly found in other Gram-positive organisms. J. Bacteriol. 172: 3089–3099PubMedGoogle Scholar
  77. Kanatani K, Tahara T, Yoshida K, Miura H, Sakamoto M & Oshimura M (1992) Plasmid-linked galactose utilization byLactobacillus acidophilus TK8912. Biosci. Biotech. Biochem. 56: 826–827Google Scholar
  78. Kandler O (1984) Current taxonomy of lactobacilli. Dev. Indust. Microbiol. 25: 109–123Google Scholar
  79. Khan S & Novick R (1982) Structural analysis of plasmid pSN2 inStaphylococcus aureus: no involvement in enterotoxin B production. J. Bacteriol. 149: 642–649PubMedGoogle Scholar
  80. —— (1983) Complete nucleotide sequence of pT181, a tetracycline-resistance plasmid fromStaphylococcus aureus. Plasmid 10: 251–259PubMedGoogle Scholar
  81. Kilara A & Treki N (1984) Uses of lactobacilli in foods. Unique benefits. Dev. Indust. Microbiol. 25: 125–138Google Scholar
  82. Kim SF, Baek SJ & Pack MY (1991) Cloning and nucleotide sequence of theLactobacillus casei lactate dehydrogenase gene. Appl. Environ. Microbiol. 57: 2413–2417PubMedGoogle Scholar
  83. Klaenhammer TR (1984) A general method for plasmid isolation in lactobacilli. Curr. Microbiol. 10: 23–28Google Scholar
  84. —— (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39–85PubMedGoogle Scholar
  85. Klaenhammer TR & Sutherland SM (1980) Detection of plasmid deoxyribonucleic acid in an isolate ofLactobacillus acidophilus. Appl. Environ. Microbiol. 35: 592–600Google Scholar
  86. Knauf HJ, Vogel RF & Hammes WP (1992) Cloning, sequence, and phenotypic expression ofkatA which encodes the catalase ofLactobacillus sake LTH677. Appl. Environ. Microbiol. 58: 832–839PubMedGoogle Scholar
  87. Koepsel R & Khan S (1987) Cleavage of single-stranded DNA by plasmid pT181-encoded RepC protein. Nucleic Acids Res. 15: 4085–4097PubMedGoogle Scholar
  88. Kok J (1990) Genetics of the proteolytic system of the lactic acid bacteria. FEMS Microbiol. Rev. 87: 15–42Google Scholar
  89. Kok J, Vossen JMBM van der & Venema G (1984) Construction of plasmid cloning vectors for lactic streptococci which also replicate inBacillus subtilis andEscherichia coli. Appl. Environ. Microbiol. 48: 726–731PubMedGoogle Scholar
  90. Lacks SA, Lopez P, Greenberg B & Espinosa M (1986) Identification and analysis of genes for tetracycline resistance and replication functions in the boad-host-range plasmid pLS1. J. Mol. Biol. 192: 753–765PubMedGoogle Scholar
  91. Le Bourgeois P, Lautier M & Ritzenthaler P (1993) Chromosome mapping in lactic acid bacteria. FEMS Micro. Rev. 12: 109–124Google Scholar
  92. Leenhouts KJ, Gietema J, Kok J & Venema G (1991) Chromosomal stabilization of the proteinase genes inLactococcus lactis. Appl. Environ. Microbiol. 56: 2568–2575Google Scholar
  93. Leer R, Christiaens H, Verstraete W, Peters L, Posno M & Pouwels PH (1993) Gene-disruption inLactobacillus plantarum strain 80 by site-specific recombination: isolation of a mutant strain deficient in conjugated bile salt hydrolase activity. Mol. Gen. Genet. 239: 269–272PubMedGoogle Scholar
  94. Leer RJ, Luijk N van, Posno M & Pouwels PH (1992) Structural and functional analysis of two cryptic plasmids fromLactobacillus pentosus MD353 andLactobacillus plantarum ATCC 8014. Mol. Gen. Genet. 234: 265–274PubMedGoogle Scholar
  95. Leer RJ, Posno M, Rijn JMM van, Lokman BC & Pouwels PH (1987) Transformation ofLactobacillus plantarum by plasmid DNA. FEMS Microbiol. Rev. 46: P20Google Scholar
  96. Leong-Morgenthaler P, Zwahlen MC & Höttinger H (1991) Lactose metabolism inLactobacillus bulgaricus: Analysis of the primary structure and expression of the genes involved. J. Bacteriol. 173: 1951–1957PubMedGoogle Scholar
  97. Lerch H-P, Frank R & Collins J (1989a) Cloning, sequencing and expression of the L-2-hydroxyisocaproate dehydrogenase-encoding gene ofLactobacillus confusus inEscherichia coli. Gene 83: 263–270PubMedGoogle Scholar
  98. Lerch HP, Blocker H, Kallwas H, Hoppe J, Tsai H & Collins J (1989b) Cloning, sequencing and expression inEschericia coli of the D-2-hydroxyisocaproate dehydrogenase gene ofLactobacillus casei. Gene 78: 47–57PubMedGoogle Scholar
  99. Lin JHC & Savage DC (1985) Cryptic plasmids inLactobacillus strains isolated from the murine gastrointestinal tract. Appl. Environ. Microbiol. 49: 1004–1006PubMedGoogle Scholar
  100. Liu ML, Kondo JK, Barnes MB & Bartholomeu DT (1988) Plasmid-linked maltose utilization inLactobacillus ssp.. Biochimie 70: 351–355PubMedGoogle Scholar
  101. Lokman BC, Santen P van, Verdoes JC, Kruse J, Leer RJ, Posno M & Pouwels PH (1991) Organization and characterization of three genes involved in D-xylose catabolism inLactobacillus pentosus. Mol. Gen. Genet. 230: 161–169PubMedGoogle Scholar
  102. Lönner C, Preve-Akeson K & Ahrné O (1990) Plasmid contents of lactic acid bacteria isolated from different types of sour doughs. Curr. Microbiol. 20: 201–207Google Scholar
  103. Luchansky JB, Muriana PM & Klaenhammer TR (1988) Application of electroporation for transfer of plasmid DNA toLactobacillus, Lactococcus, Leuconostoc, Listeria, Pediococcus, Bacillus, Staphylococcus, Enterococcus andPropionibacterium. Mol. Microbiol. 2: 637–646PubMedGoogle Scholar
  104. Maciag IE, Virel J-F & Alonso JC (1988) Replication and incompatibility properties of plasmid pUB110 inBacillus subtilis. Mol. Gen. Genet. 212: 232–240PubMedGoogle Scholar
  105. Maguin E, Duwat P, Hege T, Ehrlich D & Gruss A (1992) New thermosensitive plasmid for gram-positive bacteria. J. Bacteriol. 174: 5633–5638PubMedGoogle Scholar
  106. Mayo B, Hardisson C & Brana AF (1989) Selected characteristic of several strains ofLactobacillus plantarum. Microbiologia 5: 105–122PubMedGoogle Scholar
  107. McCormick JR, Zengel JM & Lendahl L (1991) Intermediates in the degradation of mRNA from the lactose operon ofEscherichia coli. Nucleic Acids Res. 19: 2767–2776PubMedGoogle Scholar
  108. McKay LL & Baldwin KA (1984) Conjugative 40-megadalton plasmid inStreptococcus lactis subsp.diacetylactis DRC3 is associated with resistance to nisin and bacteriophage. Appl. Environ. Microbiol. 47: 68–74PubMedGoogle Scholar
  109. McKenzie T, Hoshino T, Tanaka T & Sueoka N (1986) The nucleotide sequence of pUB110: some salient features in relation to replication and its regulation. Plasmid 15: 93–103PubMedGoogle Scholar
  110. McKenzie T, Hoshino T, Tanaka T & Sueoka N (1987) A revision of the nucleotide sequence and functional map of pUB110. Plasmid 17: 83–85PubMedGoogle Scholar
  111. Mercenier A, Pouwels PH & Chassy BM (1993) Genetic engineering of lactobacilli, leuconostoes, andStreptococcus thermophilus. In: Vos W de & Gasson M (Eds) Applied Genetics of Lactic Acid Bacteria. Blackie & Son, Ltd, Glasgow (in press)Google Scholar
  112. Metchnikoff E (1908) The prolongation of life. G.P. Putnam's & Sons, New YorkGoogle Scholar
  113. Moran CP Jr, Lang N, LeGrice SFJ, Lee G, Stephens M, Soneshein AL, Pero J & Losick R (1982) Nucleotide sequences that signal the initiation of transcription and translation inBacillus subtilis. Mol. Gen. Genet. 186: 339–346PubMedGoogle Scholar
  114. Morelli L, Vescovo M & Bottazzi V (1983a) Plasmids and antibiotic resistance inLactobacillus helveticus andLactobacillus bulgaricus isolated from natural whey culture. Microbiologia 6: 145–154Google Scholar
  115. —— (1983b) Identification of chloramphenicol resistance plasmids inLactobacillus reuteri andLactobacillus acidophilus. Int. J. Microbiol. 1: 1–5Google Scholar
  116. Muriana P & Klaenhammer TR (1987) Conjugal transfer of plasmid-encoded determinants for bacteriocin production and immunity inLactobacillus acidophilus 88. Appl. Environ. Microbiol. 53: 553–560Google Scholar
  117. —— (1991) Cloning, phenotypic expression, and DNA sequence of the gene for Lactocin F, an antimicrobial peptide produced byLactobacillus spp.. J. Bacteriol. 173: 1779–1788PubMedGoogle Scholar
  118. Nakamura LK (1981)Lactobacillus amylovorus. Int. J. Syst. Bacteriol. 31: 56–63Google Scholar
  119. Nakamura LK & Crowell CD (1979)Lactobacillus amylophilus. Dev. Indust. Microbiol. 20: 531–540Google Scholar
  120. Natori Y, Kano Y & Imamoto F (1990) Nucleotide sequences and genomic constitution of five tryptophan genes ofLactobacillus casei. J. Biochem. (Tokyo) 107: 248–255PubMedGoogle Scholar
  121. Nes IF (1984) Plasmid profiles of ten strains ofLactobacillus plantarum. FEMS Microbiol. Lett. 21: 359–361Google Scholar
  122. Novick RP (1987) Plasmid incompatibility. Microbiol. Rev. 51: 381–395PubMedGoogle Scholar
  123. Novick RP, Iordanescu S, Projan SJ, Kornblum J & Edelman I (1989) pT181 plasmid replication is regulated by a countertranscript-driven transcriptional attenuator. Cell 59: 395–404PubMedGoogle Scholar
  124. Oppenheim DS & Yanofsky C (1980) Translational coupling during expression of the tryptophan operon ofEscherichia coli. Genetics 95: 785–795PubMedGoogle Scholar
  125. Osawa S, Muto A, Ohama T, Andachi Y, Tanaka R & Yamao F (1990) Prokaryotic genetic code. Experientia 46: 1097–1106PubMedGoogle Scholar
  126. O'Sullivan DJ & Klaenhammer TR (1993) High and low copy numberLactococcus shuttle cloning vectors with feature for clone selection. SubmittedGoogle Scholar
  127. Oskouian B & Stewart GC (1990) Expression and catabolic repression of the lactose operon ofStaphyloccus aureus. J. Bacteriol. 172: 3804–3812PubMedGoogle Scholar
  128. Perdigon G, Macias MEN de, Alvarez S, Oliver G, Ruiz Holgado AP de (1988) Systemic augmentation of the immune response in mice by feeding fermented milks withLactobacillus casei andLactobacillus acidophilus. Immunology 63: 17–23PubMedGoogle Scholar
  129. Pinter K, Davisson VJ & Santi DV (1988) Cloning, sequencing, and expression of theLactobacillus casei thymidylate synthase gene. DNA 7: 235–241PubMedGoogle Scholar
  130. Porter EV & Chassy BM (1988) Nucleotide sequence of the β-D-phospho-galactoside galactohydrolase gene ofLactobacillus casei: comparison to analogouspbg genes of other Gram-positive organisms. Gene 62: 263–276PubMedGoogle Scholar
  131. Posno M, Leer RJ, Luijk K van, Giezen MJF van, Heuvelmans PTHM & Pouwels PH (1991a) Incompatibility ofLactobacillus vectors with replicons derived from small crypticLactobacillus plasmids and segregational instability of the introduced vectors. Appl. Environ. Microbiol. 57: 1822–1828Google Scholar
  132. Posno M, Heuvelmans PTHM, Giezen MJF van, Lokman BC, Leer RJ & Pouwels PH (1991b) Complementation of the inability ofLactobacillus strains to utilize D-xylose with D-xylose catabolism-encoding genes ofLactobacillus pentosus. Appl. Environ. Microbiol. 57: 2764–2766PubMedGoogle Scholar
  133. Pouwels PH, Leer RJ & Posno M (1992) Genetic modification ofLactobacillus: A new approach toward strain improvement. In: Actes du Colloque Lactic 91: 133–148Google Scholar
  134. Pouwels PH, van Luijk N, Leer RJ & Posno M (1993) Control of replication of theLactobacillus pentosus plasmid p 353–2: Evidence for a mechanism involving transcription attenuation of the gene coding for the replication protein. Molec. Gen. Genet. in pressGoogle Scholar
  135. Projan S & Novick R (1988) Comparative analysis of five related staphylococcal plasmids. Plasmid 19: 203–221PubMedGoogle Scholar
  136. Prozorov AA, Poluektova EU, Sachenko GV, Nezametdivona VZ & Khasanov FK (1987) Various means of integration of the expressible human dihydrofolate reductase gene into theBacillus subtilis genome. Gene 57: 221–227PubMedGoogle Scholar
  137. Pugsley AP (1989) Protein targeting. Academic Press, Inc.Google Scholar
  138. Raibaud O, Mock M, Schwartz M (1984) A technique for integrating any DNA fragment into the chromosome ofEscherichia coli. Gene 29: 231–241PubMedGoogle Scholar
  139. Rinckel LA & Savage DC (1990) Characterization of plasmids and plasmid-borne macrolide resistance fromLactobacillus sp. strain 100–33. Plasmid 23: 119–125PubMedGoogle Scholar
  140. Rooijen RJ van & Vos WM de (1991a) Molecular cloning, transcriptional analysis, and nucleotide sequence oflacR, a gene encoding the repressor of the lactose phosphotransferase system ofLactobacillus lactis. J. Biol. Chem. 265: 18499–18503Google Scholar
  141. Rooijen RJ van, Schalkwijk S van & Vos WM de (1991b) Molecular cloning, characterization, and nucleotide sequence of the tagatose-6-phosphate pathway gene cluster of the lactose operon ofLactobacillus lactis. J. Biol. Chem. 266: 7176–7181PubMedGoogle Scholar
  142. Rose AH (1982) History and scientific basis of microbial activity in fermented foods. In: Rose AH (Ed) Fermented Foods (pp 1–13) Academic Press, New YorkGoogle Scholar
  143. Ruiz-Barba JL, Piard JC & Simenez-Diaz R (1991) Plasmid profiles and curing of plasmids inLactobacillus plantarum strains isolated from green olive fermentations. J. Appl. Bacteriol. 71: 417–421PubMedGoogle Scholar
  144. Sanders ME, Leonhard PJ, Sing WD & Klaenhammer TR (1986) Conjugal strategy for construction of fast acid-producing, bacteriophage-resistant lactic streptococci for use in dairy fermentations. Appl. Environ. Microbiol. 52: 1001–1007Google Scholar
  145. Scheirlinck T, Mahillon J, Joos H, Dhaese P & Michiels F (1989) Integration and expression of a-amylase and endoglucanase genes in theLactobacillus plantarum chromosome. Appl. Environ. Microbiol. 55: 2130–2137PubMedGoogle Scholar
  146. Schillinger U & Lücke FK (1989) Antimicrobial activity ofLactobacillus sake isolated from meat. Appl. Environ. Microbiol. 55: 1901–1906PubMedGoogle Scholar
  147. Sharpe ME (1979) Lactic acid bacteria in the dairy industry. J. Soc. Dairy Technol. 32: 9–18Google Scholar
  148. Shay BJ, Egan A, Wright M & Rogers P (1988) Cysteine metabolism in an isolate ofLactobacillus sake: plasmid composition and cysteine transport. FEMS Microbiol. Lett. 56: 183–188Google Scholar
  149. Shimizu-Kadota M (1987) Properties of lactose plasmid pLY101 inLactobacillus casei. Appl. Environ. Microbiol. 53: 2987–2991Google Scholar
  150. Shimizu-Kadota M, Kiwaki M, Hirokawa H & Tsuchida N (1985) ISL1: a new transposable element inLactobacillus casei. Mol. Gen. Genet. 200: 193–198PubMedGoogle Scholar
  151. Shimizu-Kadota M, Shibahara-Sone H & Ishiwa H (1991) Shuttle plasmid vectors forLactobacillus casei andEscherichia coli with a minus origin. Appl. Environ. Microbiol. 57: 3292–3300PubMedGoogle Scholar
  152. Shine J & Dalgarno L (1974) The 3′-terminal sequence ofEscherichia coli 16S RNA: complementarity to non-sense triplets and ribosome binding sites. Proc. Natl. Acad. Sci USA 71: 5463–5467Google Scholar
  153. Simon D & Chopin A (1988) Construction of a vector plasmid family and its use for molecular cloning inStreptococcus lactis. Biochimie 70: 559–566PubMedGoogle Scholar
  154. Skaugen M (1989) The complete nucleotide sequence of a small cryptic plasmid fromLactobacillus plantarum. Plasmid 22: 175–179PubMedGoogle Scholar
  155. Smiley MB & Fryder V (1978) Plasmids, lactic acid production, and N-acetyl-D-glucosamine fermentation inLactobacillus helveticus subsp.jugurti. Appl. Environ. Microbiol. 35: 777–781Google Scholar
  156. Spicher G & Lönner C (1985) Die Mikroflora des Sauerteiges XXI. die in Sauerteigen schwedischer Bäckereien vorkommenden Lactobacillen. Zu Lebensm. unters. Forsch. 181: 9–13Google Scholar
  157. Swinfield MJ, Janniere L, Ehrlich SD & Minton NP (1991) Characterization of a region of theEnterococcus faecalis plasmid pAMβ1 which enhances the segregational stability of pAMβ1-derived cloning vectors inBacillus subtilis. Plasmid 26: 209–221PubMedGoogle Scholar
  158. Taguchi H & Ohta T (1991) D-lactate dehydrogenase is a member of the D-isomer-specific 2-hydroxyacid dehydrogenase family: Cloning, sequencing and expression inEscherichia coli of the L-lactate dehydrogenase gene ofLactobacillus plantarum. J. Biol. Chem. 266: 12588–12594PubMedGoogle Scholar
  159. Takiguchi R, Hashiba H, Aoyama K & Ishii S (1989) Complete nucleotide sequence and characterization of a cryptic plasmid fromLactobacillus helveticus subsp.jugurti. Appl. Environ. Microbiol. 55: 1653–1655PubMedGoogle Scholar
  160. Thomas CM (1988) Recent studies on the control of plasmid replication. Biochim. Biophys. Acta 949: 253–263PubMedGoogle Scholar
  161. Thompson K & Collins M (1991) Molecular cloning inLactobacillus helveticus by plasmid pSA3: pVA797 co-integrate formation and conjugal transfer. Appl. Microbiol. Biotech. 35: 334–338Google Scholar
  162. Toy J & Bognar AL (1990) Cloning and expression of the gene encodingLactobacillus casei Folylpoly-gamma-glutamate synthetase inEscherichia coli and determination of its primary structure. J. Biol. Chem. 265: 2492–2499PubMedGoogle Scholar
  163. Vanderslice P, Copeland W & Robertus J (1986) Cloning and nucleotide sequence of wild type and a mutant histidine decarboxylase fromLactobacillus 30a. J. Biol. Chem. 261: 15186–15191PubMedGoogle Scholar
  164. Vescovo M, Morelli L & Bottazzi V (1981) Evidence of plasmid DNA inLactobacillus. Microbiologia 4: 413–419Google Scholar
  165. —— (1982) Drug resistance plasmids inLactobacillus acidophilus andLactobacillus reuteri. Appl. Environ. Microbiol. 43: 50–56PubMedGoogle Scholar
  166. Vidgrén G, Palva I, Pakkanen R, Lounatmaa K & Palva A (1992) S-layer ofLactobacillus brevis: PCR cloning and determination of the nucleotide sequence. J. Bacteriol. 174: 7419–7427PubMedGoogle Scholar
  167. Vogel RF, Gaier W & Hammes WP (1990) Expression of the lipase gene fromStaphylococcus hyicus inLactobacillus curvatus Lc2-c. FEMS Microbiol. Lett. 69: 289–292Google Scholar
  168. Vogel RF, Lohmann M, Weller AN, Hugas M & Hammes WP (1991) Structural similarity and distribution of small cryptic plasmids ofLactobacillus curvatus andL. sake. FEMS Microbiol. Lett. 84: 183–190Google Scholar
  169. Vos WM de (1987) Gene cloning and expression in lactic streptococci. FEMS Microbiol. Rev. 46: 281–295Google Scholar
  170. Vos WM de, Underwood HM & Davies FL (1984) Plasmid encoded bacteriophage resistance inStreptococcus cremoris SK11. FEMS Microbiol. Lett. 23: 175–178Google Scholar
  171. Vujcic M & Topisirovic L (1993) Molecular analysis of the rolling-circle replicating plasmid pA1 ofLactobacillus plantarum A112. Appl. Environ. Microbiol. 59: 274–280PubMedGoogle Scholar
  172. Weicker MJ & Chambliss GH (1990) Site-directed mutagenesis of the catabolite repression operator sequence inBacillus subtilis. Proc. Natl. Acad. Sci. USA 87: 6238–6242PubMedGoogle Scholar
  173. West CA & Warner PJ (1985) Plasmid profiles and transfer of plasmid-encoded antibiotic resistance inLactobacillus plantarum. Appl. Environ. Microbiol. 50: 1319–1321PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Peter H. Pouwels
    • 1
  • Rob J. Leer
    • 1
  1. 1.Department Molecular Genetics and Gene-TechnologyTNO Medical Biological LaboratoryRijswijkThe Netherlands

Personalised recommendations