Advertisement

Antonie van Leeuwenhoek

, Volume 65, Issue 4, pp 331–347 | Cite as

Photobiology of Bacteria

  • K. J. Hellingwerf
  • W. Crielaard
  • W. D. Hoff
  • H. C. P. Matthijs
  • L. R. Mur
  • B. J. van Rotterdam
Research Articles

Abstract

The field of photobiology is concerned with the interactions between light and living matter. For Bacteria this interaction serves three recognisable physiological functions: provision of energy, protection against excess radiation and signalling (for motility and gene expression). The chemical structure of the primary light-absorbing components in biology (the chromophores of photoactive proteins) is surprisingly simple: tetrapyrroles, polyenes and derivatised aromats are the most abundant ones. The same is true for the photochemistry that is catalysed by these chromophores: this is limited to light-induced exciton- or electron-transfer and photoisomerization.

The apoproteins surrounding the chromophores provide them with the required specificity to function in various aspects of photosynthesis, photorepair, photoprotection and photosignalling. Particularly in photosynthesis several of these processes have been resolved in great detail, for others at best only a physiological description can be given.

In this contribution we discuss selected examples from various parts of the field of photobiology of Bacteria. Most examples have been taken from the purple bacteria and the cyanobacteria, with special emphasis on recently characterised signalling photoreceptors inEctothiorhodospira halophila and inFremyella diplosiphon.

Key words

photoactive proteins photoreceptors chromophores energy transduction light signalling phototaxis gene expression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad M & Cashmore C (1993)HY4 gene ofA. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366: 162–166CrossRefPubMedGoogle Scholar
  2. Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim. Biophys. Acta 1098: 275–335PubMedGoogle Scholar
  3. Allen JP, Feher G, Yeates TO, Komiya H & Rees DC (1987a) Structure of the reaction centre fromRhodopseudomonas sphaeroides R-26: The co-factors. Proc. Natl. Acad. Sci. USA 84: 5730–5734PubMedGoogle Scholar
  4. Allen JP, Feher G, Yeates TO, Komiya H & Rees DC (1987b) Structure of the reaction centre fromRhodopseudomonas sphaeroides R-26: The protein subunits. Proc. Natl. Acad. Sci. USA 84: 6162–6166Google Scholar
  5. Armitage JP (1988) Tactic responses in photosynthetic bacteria. Can. J. Microbiol. 34: 475–481Google Scholar
  6. Armitage JP (1992) Behavioral responses in bacteria. Annu. Rev. Physiol. 54: 683–714PubMedGoogle Scholar
  7. Barber J & De Las Rivas J (1993) A functional model for the role of cytochrome-b(559) in the protection against donor and acceptor side photoinhibition. Proc. Natl. Acad. Sci. USA 90: 10942–10946PubMedGoogle Scholar
  8. Brown S, Poole PS, Jeziorska W & Armitage JP (1993) Chemokinesis inRhodobacter sphaeroides is the result of a long term increase in the rate of flagellar rotation. Biochim. Biophys. Acta 1141: 309–312Google Scholar
  9. Buser CA, Thompson LK, Diner BA & Brudvig GW (1990) Electron-transfer reactions in manganese-depleted Photosystem-II. Biochemistry 29: 8977–8985PubMedGoogle Scholar
  10. Cortez N, Garcia AF, Tadros MH, Gad'on N, Schiltz E & Drews G (1992) Redox-controlled,in vivo andin vitro phosphorylation of the α subunit of the light-harvesting complex I inRhodobacter capsulatus. Arch. Microbiol. 158: 315–319Google Scholar
  11. Chiang GG, Schaefer MR & Grossman AR (1992) Complementation of a red-light-indifferent cyanobacterial mutant. Proc. Natl. Acad. Sci. USA 89: 9415–9419PubMedGoogle Scholar
  12. Clayton RK (1977) Light and Living Matter, R.E. Krieger Publishing Company, Huntington, New York, Volumes I and IIGoogle Scholar
  13. Cogdell RJ & Frank HA (1988) How carotenoids function in photosynthetic bacteria. Biochim. Biophys. Acta 895: 63–79Google Scholar
  14. Coomber SA, Chaudri M, Connor A, Britton G & Hunter CN (1990) Localized transposon Tn5 mutagenesis of the photosynthetic gene cluster ofRhodobacter sphaeroides. Mol. Microbiol. 4: 977–989PubMedGoogle Scholar
  15. Criclaard W, Cotton NPJ, Jackson JB, Hellingwerf KJ & Konings WN (1988) The transmembrane electrical potential in intact bacteria: simultaneous measurements of carotenoid absorbance changes and lipophilic cation distribution in intact cells ofRhodobacter sphaeroides. Biochim. Biophys. Acta 932: 17–25Google Scholar
  16. Dau H & Sauer K (1992) Electric field effects on the picosecond fluorescence of photosystem II and its relation to the energetics and kinetics of primary charge separation. Biochim. Biophys. Acta 1102: 91–106Google Scholar
  17. De Bont JAM, Scholten A & Hansen TA (1981) DNA-DNA hybridization ofRhodopseudomonas capsulata, Rhodopseudomonas sphaeroides, Rhodopseudomonas sulfidophila strains. Arch. Microbiol. 128: 271–274PubMedGoogle Scholar
  18. Debus RJ (1992) The manganese and calcium ions of photosynthetic oxygen evolution. Biochim. Biophys. Acta 1102: 269–352PubMedGoogle Scholar
  19. Deisenhofer J, Epp O, Miki K, Huber R & Michel H (1984) X-ray structure analysis of a membrane protein complex. Electron density maps of 3 É resolution and a model of the chromophores of the photosynthetic reaction center fromRhodopseudomonas viridis. J. Mol. Biol. 180: 385–398PubMedGoogle Scholar
  20. Federspiel NA & Grossman AR (1990) Characterization of the light-regulated gene encoding a new phycoerythrin-associated linker protein from the cyanobacteriumFremyella diplosiphon J. Bacteriol. 172: 4072–4081Google Scholar
  21. Gennis RB, Barquera B, Hacker B, Vandoren SR, Arnaud S, Crofts AR, Davidson E, Gray KA & Daldal F (1993) The bc(1) complexes ofRhodobacter sphaeroides andRhodobacter capsulatus. J. Bioenerg. Biomembr. 25: 195–209PubMedGoogle Scholar
  22. Ghosh R, Ghosh-Eicher S, DiBernardino M & Bachofen R (1994) Protein phosphorylation inRhodospirillum rubrum: purification and characterization of a water-soluble B873 protein kinase and a new component of the B873 complex, which can be phosphorylated. Biochim. Biophys. Acta 1184: 28–36Google Scholar
  23. Golbeck JH & Bryant DA (1991) Photosystem I. In: Lee CP (Ed) Current Topics in Bioenergy Vol. 16 (pp 83–177)Google Scholar
  24. Grossman AR, Schaefer MR, Chiang GG & Collier JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions Microbiol. Rev. 57: 725–749.Google Scholar
  25. Häder D-P (1987) Photosensory behaviour in prokaryotes. Microbiol. Rev. 51: 1–21PubMedGoogle Scholar
  26. Hellingwerf KJ, Crielaard W & Westerhoff HV (1994) Comparison of retinal-based and chlorophyll-based photosynthesis: A biothermokinetic description of photochemical reaction centers. In: Schuster S, Mazat J-P & Rigolet M (Eds) Modern Trends in Biothermokinetics (pp 45–52) Plenum Press, New YorkGoogle Scholar
  27. Hoff WD, Kwa SLS, Van Grondelle R & Hellingwerf KJ (1992) Low temperature absorption and fluorescence spectroscopy of the photoactive yellow protein fromEctothiorhodospira halophila. Photochem. Photobiol. 56: 529–539Google Scholar
  28. Hoff WD, Sprenger WW, Postma PW, Meyer TE, Veenhuis M, Leguijt T & Hellingwerf KJ (1994) The photoactive yellow protein fromEctothiorhodospira halophila as studied with a highly specific polyclonal antiserum: (intra)cellular localization, regulation of expression, and taxonomic distribution of cross-reacting proteins. J. Bacteriol., submittedGoogle Scholar
  29. Imhoff JF (1992) Taxonomy, phylogeny and general ecology of anoxygenic phototrophic bacteria. In: Mann NH & Carr NG (Eds) Photosynthetic Prokaryotes Ch. 2 (pp 53–92) Plenum Press, New YorkGoogle Scholar
  30. Jackson JB (1991) The proton-translocating nicotinamide adenine dinucleotide transhydrogenase. J. Bioenerg. Biomembr. 23: 715–741PubMedGoogle Scholar
  31. Jeanjean R, Matthijs HCP, Onana B, Havaux M & Joset F (1993) Exposure of the CyanobacteriumSynechocystis PCC6803 to salt stress induces concerted changes in respiration and photosynthesis. Plant Cell Physiol. 34: 1073–1079Google Scholar
  32. Joliot P, Vermeglio A & Joliot A (1993) Supramolecular membrane protein assemblies in photosynthesis and respiration. Biochim. Biophys. Acta 1141: 151–174Google Scholar
  33. Jones MR, Fowler GJS, Gibson LCD, Grief GG, Olsen JD, Crielaard W & Hunter CN (1992) Mutants ofRhodobacter sphaeroides lacking one or more pigment-protein complexes and complementation with reaction-centre, LH1 and LH2 genes. Mol. Microbiol. 6: 1173–1184PubMedGoogle Scholar
  34. Kim S-T, Li YF & Sancar A (1992) The third chromophore of DNA photolyase: Trp-277 ofEscherichia coli DNA photolyase repairs thymine dimers by direct electron transfer. Proc. Natl. Acad. Sci. USA 89: 900–904PubMedGoogle Scholar
  35. Lee WJ & Whitmarsh J (1989) Photosynthetic apparatus of pea thylakoid membranes. Response to growth light intensity. Plant Physiol. 89: 932–940Google Scholar
  36. Leguijt T (1993) Photosynthetic electron transfer inEctothiorhodospira. PhD-Thesis, University of AmsterdamGoogle Scholar
  37. Leguijt T, Engels PW, Crielaard W, Albracht SPJ & Hellingwerf KJ (1993) Abundance, subunit-composition, redox-properties and catalytic activity of the cytochrome b/c1-complex from alkaliphilic and halophilic, photosynthetic members of the familyEctothiorhodospiraceae. J. Bacteriol. 175: 1629–1636PubMedGoogle Scholar
  38. Li P & Champion PM (1994) Investigations of the thermal response of Laser-excited biomolecules. Biophys. J. 66: 430–436PubMedGoogle Scholar
  39. Manasse RS & Bendall DS (1993) Characteristics of cyclic electron transport in the cyanobacteriumPhormidium laminosum Biochim. Biophys. Acta 1183: 361–368Google Scholar
  40. Matthijs HCP, Ludérus EME, Löffler HJM, Scholts MJC & Kraayenhof R (1984) Energy metabolism in the cyanobacteriumPlectonema boryanum. Participation of the thylakoid photosynthetic electron transfer chain in the dark respiration of NADPH and NADH. Biochim. Biophys. Acta 766: 29–37Google Scholar
  41. Matthijs HCP & Lubberding HJ (1988) Dark respiration in cyanobacteria. In: Rogers LJ & Gallon JR (Eds) Biochemistry of the Algae and Cyanobacteria, Proc. Eur. Phytochem Soc. Vol. 28 (pp 131–145) Clarendon Press, OxfordGoogle Scholar
  42. Matthijs HCP, Van der Staay GWM & Mur LR (1994) Prochlorophytes: the ‘other’ cyanobacteria? In: Bryant DA (Ed) The Molecular Biology of Cyanobacteria (pp 49–64) Kluwer Academic Publishers, DordrechtGoogle Scholar
  43. McGowan SJ, Gorham HC & Hodgson DA (1993) Light-induced carotenogenesis inMyxococcus xanthus: DNA sequence analysis of thecarR region. Mol. Microbiol. 10: 713–735Google Scholar
  44. McRee DE, Tainer JA, Meyer TE, Van Beeumen J, Cusanovich MA & Getzoff ED (1989) Crystallographic structure of a photoreceptor protein at 2.4 Å resolution. Proc. Natl. Acad. Sci. USA 86: 6533–6537PubMedGoogle Scholar
  45. Meyer TE 1985. Isolation and characterization of soluble cytochromes, ferredoxins and other chromophoric proteins from the halophilic phototrophic bacteriumEctothiorhodospira halophila. Biochim. Biophys. Acta 806: 175–183PubMedGoogle Scholar
  46. Meyer TE, Fitch JC, Bartsch RG, Tollin G & Cusanovich MA (1990) Soluble cytochromes and a photoactive yellow protein isolated from the moderately halophilic purple phototrophic bacterium,Rhodospirillum salexigens. Biochim. Biophys. Acta 1016: 364–370PubMedGoogle Scholar
  47. Meyer TE, Tollin G, Causgrove TP, Cheng P & Blankenschip RE (1991) Picosecond decay kinetics and quantum yield of fluorescence of the photoactive yellow protein from the halophilic purple phototrophic bacterium,Ectothiorhodospira halophila. Biophys. J. 59: 988–991Google Scholar
  48. Meyer TE, Tollin G, Hazzard JH & Cusanovich MA (1989) Photoactive yellow protein from the purple phototrophic bacterium,Ectothiorhodospira halophila. Biophys. J. 56: 559–564PubMedGoogle Scholar
  49. Meyer TE, Yakali E, Cusanovich MA & Tollin G (1987) Properties of a water-soluble, yellow protein isolated from a halophilic phototrophic bacterium that has photochemical activity analogous to sensory rhodopsin. Biochemistry 26: 418–423Google Scholar
  50. Mi H, Endo T, Schreiber U, Ogawa T & Asada K (1992) Donation Rates of Electrons from NAD(P)H-mediated cyclic and respiratory electron flows via plastoquinone to P700+ in cyanobacteria. Pl. Cell Physiol. 33: 1233–1239Google Scholar
  51. Miller A, Leigeber H, Hoff WD & Hellingwerf KJ (1993) A light-dependent branching reaction in the photocycle of the photoactive yellow protein fromEctothiorhodospira halophila. Biochim. Biophys. Acta 1141: 190–196Google Scholar
  52. Molenaar D, Crielaard W & Hellingwerf KJ (1988) Characterization of proton motive force generation in liposomes reconstituted from phosphatidylethanolamine, reaction centers with light-harvesting complexes isolated fromRhodopseudomonas palustris. Biochemistry 27: 2014–2023Google Scholar
  53. Nitschke W & Rutherford AW (1991) Photosynthetic reaction centers: variations on a common structural theme? Trends in Biochem. Sci. 16: 241–245Google Scholar
  54. Okamura K, Takamiya K & Nishimura M (1985) Photosynthetic electron transfer system is operative in anaerobic cells ofErythrobacter species strain OCh-114. Arch. Microbiol. 142: 12–17Google Scholar
  55. Packer HL & Armitage JP (1993) The unidirectional flagellar motor ofRhodobacter sphaeroides WS8 can rotate either clockwise or counterclockwise: Characterization of the flagellum under both conditions by antibody decoration. J. Bacteriol. 175: 6041–6045Google Scholar
  56. Pakrasi HB, Nyhus KJ, Mannan RJ & Matthijs HCP (1992) Argyrourdi-Akoyunoglou JH (Ed) Photosystem I in the Nitrogen fixing CyanobacteriumAnabaena ATCC29413: subunit composition and directed mutagenesis of cofactor binding proteins Proc. NATO workshop on Oxygenic Photosynthesis (pp 292–304) Balabam Acad. Publ.Google Scholar
  57. Peltier G & Schmidt GW (1991) Chlororespiration: an adaptation to nitrogen deficiency inChlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 88: 4791–4795Google Scholar
  58. Ramirez JM (1992) Carotenoid pigments of photosynthetic membranes. In: Barber J, Guerrero MG & Medrano H (Eds) Trends in Photosynthesis Research, Ch. 30 (pp 383–400) Intercept Ltd., AndoverGoogle Scholar
  59. Sancar A & Sancar GB (1988) DNA repair enzymes. Annu. Rev. Biochem. 57: 29–67CrossRefPubMedGoogle Scholar
  60. Sandmann G (1991) Light-dependent switch from formation of poly-cis carotenes to all-trans carotenoids in theScenedesmus mutant C-6D. Arch. Microbiol. 155: 229–233Google Scholar
  61. Scherer S (1990) Do photosynthetic and respiratory electron transport chains share redox proteins? Trends in Biochem. Sci. 15: 458–462Google Scholar
  62. Schlegel HG (1986) General Microbiology, Cambridge University Press, CambridgeGoogle Scholar
  63. Schluchter WM & Bryant DA (1992) Molecular characterization of FNR in cyanobacteria: cloning and sequence of thepetH gene ofSynechococcus PCC 7002. Biochemistry 31: 3092–3102PubMedGoogle Scholar
  64. Schubert H, Kroon B & Matthijs HCP (1994)In vivo manipulation of the xanthophyll cycle and the role of zeaxanthin in the protection against photodamage in the green algaChlorella pyrenoidosa. J. Biol. Chem. 269: 7267–7272PubMedGoogle Scholar
  65. Seliger HH (1977) Environmental photobiology. In: Smith KC (Ed) The Science of Photobiology, Ch. 6 (pp 143–173) Plenum Press, New YorkGoogle Scholar
  66. Shipton CA & Barber J (1991) Photoinduced degradation of the d1-polypeptide in isolated reaction centers of photosystem-II — evidence for an autoproteolytic process triggered by the oxidizing side of the photosystem. Proc. Natl. Acad. Sci. USA 88: 6691–6695PubMedGoogle Scholar
  67. Sobczyk A, Schyns G, Tandeau de Marsac N & Houmard J (1993) Transduction of the light signal during complementary chromatic adaptation in the cyanobacteriumCalothrix sp. PCC 7601: DNA-binding proteins and modulation by phosphorylation. EMBO J. 12: 997–1004PubMedGoogle Scholar
  68. Song P-S, Suzuki S, Kim I-D & Kim JH (1991) Properties and evolution of photoreceptors. In: Holmes MG (Ed) Photoreceptor Evolution and Function, Ch. 2 (pp 21–63) Academic Press, LondonGoogle Scholar
  69. Sprenger WW, Hoff WD, Armitage JP & Hellingwerf KJ (1993) The eubacteriumEctothiorhodospira halophila is negatively phototactic with a wavelength dependence that fits the absorption spectrum of the photoactive yellow protein. J. Bacteriol. 175: 3096–3104PubMedGoogle Scholar
  70. Stavenga DG, Schwemer J & Hellingwerf KJ (1991) Visual pigments, bacterial rhodopsins and related retinoid-binding proteins. In: Holmes MG (Ed) Photoreceptor Evolution and Function, Ch. 9 (pp 261–349) Academic Press, LondonGoogle Scholar
  71. Takamiya K, Iba K & Nishimura M (1987) Reaction center complex from aerobic photosynthetic bacterium,Erythrobacter sp. OCh-114. Biochim. Biophys. Acta 890: 127–133Google Scholar
  72. Tandeau de Marsac N & Houmard J (1993) Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiol. Rev. 104: 119–190.Google Scholar
  73. Trumpower BL (1990) Cytochrome b/c1 complexes of micro organisms. Microbiol. Rev. 54: 101–129PubMedGoogle Scholar
  74. Van Beeumen J, Devreese B, Van Bun S, Hoff WD, Hellingwerf KJ, Meyer TE, McRee DE & Cusanovich MA (1993) The primary structure of a photoactive yellow protein from the phototrophic bacterium,Ectothiorhodospira halophila, with evidence for the mass and the binding site of the chromophore. Protein Science 2: 1114–1125Google Scholar
  75. Van Grondelle R, Dekker JP, Gillbro T & Sundström V (1994) Energy transfer and trapping in photosynthesis. Biochim. Biophys. Acta, in pressGoogle Scholar
  76. Vermaas WFJ, Rutherford AW & Hansson O (1988) Site-directed mutagenesis in photosystem II of the cyanobacteriumSynechocystis sp. PCC6803: Donor D is a tyrosine residue in the D2 protein. Proc. Natl. Acad. Sci. USA 85: 8477–8481Google Scholar
  77. Vermeglio A, Joliot P & Joliot A (1993) The rate of cytochromec 2 photooxidation reflects the subcellular distribution of reaction centers inRhodobacter sphaeroides Ga cells. Biochim. Biophys. Acta 1183: 352–360Google Scholar
  78. Westerhoff HV & Van Dam K (1987) Thermodynamics and Control of Biological Free-energy Transduction, Elsevier, AmsterdamGoogle Scholar
  79. Woese CR (1987) Bacterial evolution. Microbiol. Rev. 51: 221–271.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • K. J. Hellingwerf
    • 1
  • W. Crielaard
    • 1
  • W. D. Hoff
    • 1
  • H. C. P. Matthijs
    • 1
    • 2
  • L. R. Mur
    • 2
  • B. J. van Rotterdam
    • 1
  1. 1.Department of MicrobiologyE.C. Slater InstituteAmsterdamThe Netherlands
  2. 2.Department of MicrobiologyAmsterdam Research Institute of Substances in the EnvironmentAmsterdamThe Netherlands

Personalised recommendations