Antonie van Leeuwenhoek

, Volume 65, Issue 4, pp 289–310

Oxygen reactions with bacterial oxidases and globins: binding, reduction and regulation

  • Robert K. Poole
Research Articles

DOI: 10.1007/BF00872215

Cite this article as:
Poole, R.K. Antonie van Leeuwenhoek (1994) 65: 289. doi:10.1007/BF00872215
  • 127 Downloads

Abstract

Oxygen is favoured as terminal electron acceptor in aerobic and facultative microorganisms because of its appropriate physical state, satisfactory solubility and its desirable combinations of kinetic and thermodynamic properties. Oxygen is generally reduced by four electrons to yield oxygen, but there are important biological consequences of, and roles for, the partial reduction to superoxide and peroxide. Complex and multiple regulatory networks ensure (i) the utilization of oxygen in preference to other oxidants, (ii) the synthesis of oxygen-consuming enzymes with appropriate properties (particularly affinity for the ligand), and (iii) appropriate cellular protection in the event of oxidative stress. This contribution reviews the terminal respiratory oxidases of selected Gram-negative bacteria and microbial haemoglobin-like proteins.

Recent studies of the cytochromebd-type oxidases ofEscherichia coli andAzotobacter vinelandii suggest that, despite probable similarity at the amino acid level, the reactivities of these oxidases with oxygen are strikingly different. The respiratory protection afforded to nitrogenase in the obligately aerobic diazotrophA. vinelandii by the cytochromebd complex appears to be accompanied by, and may be the result of, a low affinity for oxygen and a high Vmax. The poorly characterized cytochromeo-containing oxidase in this bacterium is not required for respiratory protection. InE. coli, the cytochromebd-type oxidase has a remarkably high affinity for oxygen, consistent with the view that this is an oxygen-scavenging oxidase utilized under microaerobic conditions. The demonstration of substrate (i.e. oxygen) inhibition in this complex suggests a mechanism whereby wasteful electron flux through a non-proton-pumping oxidase is avoided at higher dissolved oxygen tensions. The demonstration of two ligandbinding sites (haemsd andb595) in oxidases of this type suggests plausible mechanisms for this phenomenon. InE. coli, assembly of the cytochromebd-type oxidase (and of periplasmic cytochromesb andc) requires the presence of an ABC transporter, which may serve to export haem or some “assembly factor' to the periplasm.

There is at least one additional oxygen-consuming protein inE. coli — the flavohaemoglobin encoded by thehmp gene. Globin-like proteins are also widely distributed in other bacteria, fungi and protozoa, but most have unknown functions. The function of HMP and the related chimaeric flavohaemoglobins in other bacteria and yeast is unknown; one of several possibilities for HMP is that its relatively low affinity for oxygen during turnover with NADH as substrate could enable it to function as a sensor of falling (or rising) cytoplasmic oxygen concentrations.

Key words

bacterial haemoglobins cytochromes globins haem proteins oxygen oxidases 

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Robert K. Poole
    • 1
  1. 1.Division of Life SciencesKing's College LondonLondonUK

Personalised recommendations