Applied Intelligence

, Volume 3, Issue 4, pp 317–341 | Cite as

RESEDA: A knowledge-based advisory system for remote sensing

  • Oliver Günther
  • Günter Hess
  • Michael Mutz
  • Wolf-Fritz Riekert
  • Thomas Ruwwe


This article describes the design and implementation of RESEDA (RemoteSensorDataAnalysis), a knowledge-based system for the extraction of environmental information from digital raster images of the earth. The images may have been obtained from airborne or spaceborne sensors. Ancillary data is used to improve the results of the image analysis; in particular, we are using digital map data stored in a geographic information system for this purpose. The main goal of the system is to provide easy access to remote sensing technology for non-expert users, such as decision makers in environmental management.

Key words

Knowledge-based system remote sensing environment image processing geographic information system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. H. Swain and S. M. Davis (eds.),Remote Sensing: The Quantitative Approach McGraw-Hill: New York, 1978.Google Scholar
  2. 2.
    T. M. Lillesand and R. W. Kiefer,Remote Sensing and Image Interpretation John Wiley & Sons: New York, 1987.Google Scholar
  3. 3.
    Ch. Schmullius,Klassifizierung einer Region mit Landsat-TM-Daten für Planung und Statistik-Untersuchung über grundsätzliche Möglichkeiten zur Nutzung von Fernerkundungsdaten im Umweltbereich Studie im Auftrag des Umweltministeriums Baden-Württemberg, Stuttgart, 1988.Google Scholar
  4. 4.
    P. Zamparoni, “Feature extraction by rank-order filtering for image segmentation,”Int. J. Pattern Recognition Artif. Intell. vol. 2, no. 2, pp. 301–319, 1988.Google Scholar
  5. 5.
    Ton, Sticklen, and Jain, “Knowledge-based segmentation of LANDSAT images,”IEEE Trans. Geosci. Remote Sensing vol. 29, no. 2, pp. 222–232, March 1991.Google Scholar
  6. 6.
    R. Abler, “The National Science Foundation National Center for Geographic Information and Analysis,”Int. J. Geograph. Inform. Syst. vol. 1, no. 4, pp. 303–326, 1987.Google Scholar
  7. 7.
    SICAD-aktuell, Siemens Computer Aided Design, Kurzinformation, Siemens AG, München, 1988.Google Scholar
  8. 8.
    D. G. Goodenough et al., “An expert system for remote sensing,”IEEE Trans. Geosci. Remote Sensing GE vol. 25, no. 3, pp. 349–359, May 1987.Google Scholar
  9. 9.
    L. L. F. Jansen, “GIS supported land cover classification of satellite images,” inProc. EGIS'90 Conf., Amsterdam, 1990.Google Scholar
  10. 10.
    D. M. McKeown, Jr., “The role of artificial intelligence in the integration of remotely sensed data with geographic information systems,”IEEE Trans. Geosci. Remote Sensing GE, vol. 25, no. 3, pp. 330–347, May 1987.Google Scholar
  11. 11.
    W.-F. Riekert, “Extracting area objects from raster images,”IEEE Comput. Graph. Appl. vol. 13, no. 2, pp. 68–73, March 1993.Google Scholar
  12. 12.
    J. Desachy, “ICARE: An expert system for automatic mapping from satellite imagery,” inMapping and Spatial Modeling for Navigation edited by L. F. Pau, Springer-Verlag: Berlin, 1990.Google Scholar
  13. 13.
    B. G. Buchanan and E. H. Shortliffe (eds.),Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project Addison-Wesley: Reading, MA, 1984.Google Scholar
  14. 14.
    J. Gordon and E. Shortliffe, “A method for managing evidential reasoning in a hierarchical hypotheses space,”AI J. vol. 26, pp. 323–357, 1985.Google Scholar
  15. 15.
    P. A. Burrough,Principles of Geographical Information Systems for Land Resources Assessment Clarendon Press: Oxford, 1986.Google Scholar
  16. 16.
    A. Buchmann, O. Günther, T. R. Smith, and Y.-F Wang (eds.),Design and Implementation of Large Spatial Databases Proceedings SSD '89,Lecture Notes in Computer Science no. 409, Springer-Verlag: Berlin, 1989.Google Scholar
  17. 17.
    K. R. Dittrich (ed.), “Advances in object-oriented database systems,”Lecture Notes in Computer Science no. 334, Springer-Verlag: Berlin, 1988.Google Scholar
  18. 18.
    G. F. Luger and W. A. Stubblefield,Artificial Intelligence and the Design of Expert Systems Benjamin/Cummings: Redwood City, CA, ch. 14, 1989.Google Scholar
  19. 19.
    A. A. G. Requicha, “Representations for rigid solids: Theory, methods, and systems,”ACM Computing Surveys vol. 12, no. 4, pp. 437–464, 1980.Google Scholar
  20. 20.
    O. Günther,Efficient Structures for Geometric Data Management, Lecture Notes in Computer Science no. 337, Springer-Verlag: Berlin, 1988.Google Scholar
  21. 21.
    H. Samet,The Design and Analysis of Spatial Data Structures Addison-Wesley: Reading, MA, 1989.Google Scholar
  22. 22.
    A. Kemper and M. Wallrath, “An analysis of geometric modelling in database systems,”ACM Comp. Surveys vol. 19, no. 1, pp. 47–91, 1987.Google Scholar
  23. 23.
    R. B. McMaster, “Automated line generalization,”Cartographica vol. 24, no. 2, pp. 74–111, 1987.Google Scholar
  24. 24.
    R. B. McMaster, “Cartographic generalization in a digital environment: A framework for implementation in geographic information system,”Proc. GIS/LIS Conf., San Antonio, TX, 1988, pp. 240–255.Google Scholar
  25. 25.
    O. Günther and W.-F. Riekert, “Spatial database techniques for remote sensing,” inProc. 4th Int. Symp. Spatial Data Handling, Zurich, July 23–27, 1990, pp. 961–970.Google Scholar
  26. 26.
    M. Stonebraker, E. Anderson, E. Hanson, and B. Rubenstein, “QUEL as a data type,” inProc. ACM SIGMOD Conf. Management of Data (Boston, MA, ACM: New York, 1984, pp. 208–214.Google Scholar
  27. 27.
    M. Stonebraker, E. Wong, P. Kreps, and G. Held, “The design and implementation of INGRES,”ACM Trans. Database Syst. vol. 1, no. 3, pp. 189–222, 1976.Google Scholar
  28. 28.
    J. Nievergelt, H. Hinterberger, and K. C. Sevcik, “The grid file: An adaptable, symmetric multikey file structure,”ACM Trans. Database Syst. vol. 9, no. 1, pp. 38–71, 1984.Google Scholar
  29. 29.
    A. Guttman, “R-trees: A dynamic index structure for spatial searching,” inProc. ACM SIGMOD Conf. Management of Data, Boston, MA, 1984, pp. 47–57.Google Scholar
  30. 30.
    SICAD-GDB (BS2000)—User Manual, Siemens AG, München, 1988.Google Scholar
  31. 31.
    B. Seeger and H.-P. Kriegel, “Techniques for design and implementation of efficient spatial access methods,” inProc. 14th Int. Conf. Very Large Data Bases, 1988.Google Scholar
  32. 32.
    O. Günther and J. Bilmes, “Tree-based access methods for spatial databases: Implementation and performance evaluation,”IEEE Trans. Knowledge Data Eng. vol. 3, no. 3, pp. 342–356, 1991.Google Scholar
  33. 33.
    O. Günther, “Evaluation of spatial access methods with oversize shelves,” inGeographic Database Management Systems G. Gambosi, M. Scholl, and H.-W. Six (eds.), Springer-Verlag: Berlin, pp. 177–193, 1992.Google Scholar
  34. 34.
    COPERNICUS Language Reference Manual, Version 1.1, Teknowledge Inc., Palo Alto, CA, USA, 1988.Google Scholar
  35. 35.
    W. F. Riekert, G. Hess, and O. Günther, “Architecture of a knowledge-based system for remote sensor data analysis,” inProc. Third Int. Conf. Indust. Eng. Appl. Artif. Intell. Expert Syst. IEA/AIE-90, Charleston, South Carolina, USA, July 15–18, 1990.Google Scholar
  36. 36.
    W.-F. Riekert, Th. Ruwwe, and G. Hess, “Model-based assistance for analyzing remote sensor data,”Proc. ISPRS Comm. VII Mid-Term Symp. Global Environmental Monitoring—Techniques and Impacts, Victoria, B.C., September 17–21, 1990, pp. 146–152.Google Scholar
  37. 37.
    W.-F. Riekert, “The RESEDA project—A knowledge based approach to extracting environmental information from remote sensor data,” in V. Cantoni et al. (eds.),Progress in Image Analysis and Processing, World Scientific, pp. 623–628, 1990.Google Scholar
  38. 38.
    W.-F. Riekert, “Providing declarative access to a processing system for satellite image data,” inProc. PDK'91, International Workshop on Processing Declarative Knowledge Springer-Verlag: Berlin, 1991, pp. 214–220.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Oliver Günther
    • 1
  • Günter Hess
    • 2
  • Michael Mutz
    • 3
  • Wolf-Fritz Riekert
    • 4
  • Thomas Ruwwe
    • 5
  1. 1.Humboldt-Universität zu BerlinBerlinGermany
  2. 2.FAW UlmUlmGermany
  3. 3.Technische Universität CottbusBad SaarowGermany
  4. 4.FAW UlmUlmGermany
  5. 5.German Space Agency (DARA)BonnGermany

Personalised recommendations