Theoretical and Applied Climatology

, Volume 53, Issue 4, pp 185–209 | Cite as

Interannual variability and regional climate simulations

  • D. Lüthi
  • A. Cress
  • H. C. Davies
  • C. Frei
  • C. Schär


An assessment is made of a regional climate model's skill in simulating the mean climatology and the interannual variability experienced in a specific region. To this end two ensembles comprising three realizations of month-long January and July simulations are undertaken with a limited are a operational NWP model. The modelling suite is driven at its lateral boundaries by analysed meteorological fields and the computational domain covers Europe and the North-western Atlantic with a horizontal resolution of 56 km.

Validation is performed against both operational ECMWF analyses and objectively analysed precipitation fields from a network of ~ 1400 SYNOP rain gauge stations. Analysis of the simulated ensemble-mean climatology indicates that the model successfully reproduces both the winter and summer distributions of the primary dynamical and thermodynamical field, and also provides a reasonable representation of the measured precipitation over most of Europe. Typically the domain averaged model-biases are below 0.5 K for temperature and 0.1 g/kg for specific humidity. Analysis of the interannual variability reveals that the model captures the wintertime changes including that of the precipitation distribution, but in contrast the summertime precipitation totals for the individual years is not simulated satisfactorily and only partially reproduces the observed regional interannual variability.

The latter shortcomings are related to the following factors. Firstly the model bias in the dynamical fields is somewhat larger for summer than winter, while at the same time summertime interannual variability is associated with weaker effects in the dynamical fields. Secondly the summertime precipitation distribution is more substantially affected by small-scale moist convection and surface hydrological processes. Together these two factors suggest that summertime precipitation over continental extratropical land masses might be intrinsically less predictable than wintertime synoptic scale precipitation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AMS, 1991: On global climate change.Bull. Amer. Meteor. Soc. 72, 57–59.Google Scholar
  2. Cress, A., Majewski, D., Podzun, R., Renner, V., 1995: Simulation of European climate with a limited area model. Part I: Observed boundary conditions.Contrib. Atmos. Phys. 68, 161–178.Google Scholar
  3. Davies, H. C., 1976: A lateral boundary formulation for multi-level prediction models.Quart. J. Roy. Meteor. Soc. 102, 405–418.Google Scholar
  4. Deque, M., Piedelievre, J. Ph., 1995: High resolution climate simulation over Europe.Climate Dynamics, (submitted).Google Scholar
  5. Dickinson, R. E., Errico, R. M., Giorgi, F., Bates, G. T., 1989: A regional climate model for the western United States.Climatic Change 15, 383–422.Google Scholar
  6. Fliri, F., 1974: Niederschlag und Lufttemperatur im Alpenraum.Wissenschaftliche Alpenvereinshefte,24, 111 pp.Google Scholar
  7. Fliri, F., 1984: Synoptische Klimatologie der Alpen zwischen Mont Blanc und Hohen Tauern.Wissenschaftliche Alpenvereinshefte,29, 686pp.Google Scholar
  8. Giorgi, F., 1990: Sensitivity of wintertime precipitation and soil hydrology simulation over the western United States to lower boundary specifications.Atmos. Ocean 18, 1–23.Google Scholar
  9. Giorgi, F., Mearns, L. O., 1991: Approaches to the simulation of regional climate change: A review.Rev. Geophys. 29(2), 191–216.Google Scholar
  10. Giorgi, F., Marinucci, M. R., 1991: Validation of a regional atmospheric model over Europe: Sensitivity of wintertime and summertime simulations to selected physics parameterizations and lower boundary conditions.Quart. J. Roy. Meteor. Soc. 117, 1171–1206.Google Scholar
  11. Giorgi, F., Marinucci, M. R., Visconti, G., 1992: A 2 × CO2 climate change scenario over Europe generated using a limited area model nested in a general circulation model. 2: Climate change scenario.J. Geophys. Res. 97, 10011–10028.Google Scholar
  12. Groisman, P. Y., Legates, D. R., 1994: The accuracy of United States precipitation data.Bull. Amer. Meteor. Soc. 75, 215–227.Google Scholar
  13. Houghton, J. T., Jenkins, G. J., Ephraums, J. J., (eds.), 1990:Climatic Change: The IPCC Scientific Assessment. World Meteorological Organization/United Nations Environment Programme, Cambridge Univ. Press, 365pp.Google Scholar
  14. Houghton, J. T., Callander, B. A., Varney, S. K., (eds.), 1992:Climate Change 1992. The Supplementary Report to the IPCC Scientific Assessment. World Meteorological Organization / United Nations Environment Programme, Cambridge Univ. Press, 200pp.Google Scholar
  15. Jacobsen, I., Heise, E., 1982: A new economic method for the computation of the surface temperature in numerical models.Beitr. Phys. Atmos. 55, 128–141.Google Scholar
  16. Jones, R. G., Murphy, J. M., Noguer, M., 1995: Simulation of climate change over Europe using a nested regional climate model. I: Assessment of control climate, including sensitivity to location of boundaries.Quart. J. Roy. Meteor. Soc.,121, (in press).Google Scholar
  17. Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere.Bound. Layer Meteor. 17, 187–202.Google Scholar
  18. Majewski, D., 1985: Balanced initial and boundary values for a limited-area model.Contrib. Atmos. Phys. 58, 147–159.Google Scholar
  19. Majewski, D., 1991: The Europa-Modell of the Deutscher Wetterdienst. ECMWF Proc. “Numerical methods in atmospheric models”. Reading, GB, September 1991, Vol 2, 147–191.Google Scholar
  20. Majewski, D., Schrodin, R., 1994: Short Description of the Europa-Modell (EM) and Deutschland-Modell (DM) of the Deutscher Wetterdienst (DWD). (Quarterly Bulletin).Google Scholar
  21. Marinucci, M. R., Giorgi, F., 1992: A 2 × CO2 climate change scenario over Europe generated using a limited area model nested in a general circulation model. 1: Present-day seasonal climate simulation.J. Geophys. Res. 97, 9989–10009.Google Scholar
  22. Mellor, G. L., Yamada, T., 1974: A hierarchy of turbulence closure models for planetary boundary layers.J. Atmos. Sci. 31, 1791–1806.Google Scholar
  23. McGregor, J. L., Walsh, K., 1994: Climate change simulations of Tasmanian precipitation using multiple nesting.J. Geophys. Res. 99, 20889–20905.Google Scholar
  24. Müller, E., 1981: Turbulent flux parameterization in a regional-scale model. ECMWF Workshop on planetary boundary layer parameterization, 193–220.Google Scholar
  25. Podzun, R., Cress, A., Majewski, D., Renner, V., 1995: Simulation of European climate with a limited area model. Part II: AGCM boundary conditions.Contrib. Atmos. Phys.,68, (in press).Google Scholar
  26. Ritter, B., Geleyn, J. F., 1992: A comprehensive radiation scheme for numerical weather prediction with potential applications in climate simulations.Mon. Wea. Rev. 109, 758–766.Google Scholar
  27. Robinson, P. J., Finkelstein, P. L., 1991: The development of impact-orientated climate scenarios.Bull. Amer. Meteor. Soc. 72, 481–490.Google Scholar
  28. Sevruk, B., 1985: Correction of precipitation measurements, summary report. In: Proceedings of the ETH/IAHS/WMO workshop on the correction of precipitation data; Zürich, 1985, 13–23.Google Scholar
  29. Shepard, D. S., 1968: A two-dimensional interpolation function for irregularly-spaced data. Proceedings — 1968 ACM National Conference, 517–524.Google Scholar
  30. Shepard, D. S., 1984: Computer mapping: The SYMAP interpolation algorithm. In: Gaile, G. L., Willmott, C. J., (eds.)Spatial Statistics and Models, pp. 133–145.Google Scholar
  31. Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models.Mon. Wea. Rev. 117, 1779–1800.Google Scholar
  32. Willmott, C. J., Rowe, C. M., Philpot, W. D., 1985: Small-scale climate maps: a sensitivity analysis of some common assumptions associated with grid-point interpolation and contouring.The Americ. Cartographer 12, 5–16.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • D. Lüthi
    • 1
  • A. Cress
    • 1
  • H. C. Davies
    • 1
  • C. Frei
    • 1
  • C. Schär
    • 1
  1. 1.Atmospheric Physics ETHZürichSwitzerland

Personalised recommendations