Advertisement

Antonie van Leeuwenhoek

, Volume 66, Issue 1–3, pp 271–294 | Cite as

Metabolic interactions between anaerobic bacteria in methanogenic environments

  • Alfons J. M. Stams
Research Articles

Abstract

In methanogenic environments organic matter is degraded by associations of fermenting, acetogenic and methanogenic bacteria. Hydrogen and formate consumption, and to some extent also acetate consumption, by methanogens affects the metabolism of the other bacteria. Product formation of fermenting bacteria is shifted to more oxidized products, while acetogenic bacteria are only able to metabolize compounds when methanogens consume hydrogen and formate efficiently. These types of metabolic interaction between anaerobic bacteria is due to the fact that the oxidation of NADH and FADH2 coupled to proton or bicarbonate reduction is thermodynamically only feasible at low hydrogen and formate concentrations. Syntrophic relationships which depend on interspecies hydrogen or formate transfer were described for the degradation of e.g. fatty acids, amino acids and aromatic compounds.

Key words

Amino acids anaerobic competition fatty acids fermentation formate hydrogen methanogenic mutualism sugars syntrophy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahring BK & Westermann P (1987a) Thermophilic anaerobic degradation of butyrate by a butyrate-utilizing bacterium in coculture and triculture with methanogenic bacteria. Appl. Environ. Microbiol. 53: 429–433Google Scholar
  2. —— (1987b) Kinetics of butyrate, acetate, and hydrogen metabolism in a thermophilic, anaerobic, butyrate-degrading triculture. Appl. Environ. Microbiol. 53: 434–439Google Scholar
  3. —— (1988) Product inhibition of butyrate metabolism by acetate and hydrogen in a thermophilic coculture. Appl. Environ. Microbiol. 54: 2393–2397Google Scholar
  4. Amos DA & McInerney MJ (1990) Growth ofSyntrophomonas wolfei on short-chain unsaturated fatty acids. Arch. Microbiol. 154: 31–36Google Scholar
  5. Barik S, Brulla WJ & Bryant MP (1985) PA-1, a versatile anaerobe obtained in pure culture, catabolizes benzenoids and other compounds in syntrophy with hydrogenotrophs, and P-2 plusWolinella sp. degrades benzenoids. Appl. Environ. Microbiol. 50: 304–310Google Scholar
  6. Barker HA (1981) Amino acid degradation by anaerobic bacteria. Ann. Rev. Biochem. 50: 23–40Google Scholar
  7. Beaty PS & McInerney MJ (1987) Growth ofSyntrophomonas wolfei in pure culture on crotonate. Arch. Microbiol. 147: 389–393Google Scholar
  8. Belaich JP, Heitz P, Rousset M & Garcia JL (1990) Energetics of the growth of a new syntrophic benzoate degrading bacterium. In: Belaich JP, Bruschi M & Garcia JL (eds) Microbiology and biochemistry of strict anaerobes involved in interspecies hydrogen transfer (pp 269–280) Plenum Publishing Corporation, New YorkGoogle Scholar
  9. Ben-Bassat A, Lamed R & Zeikus JG (1981) Ethanol production by thermophilic bacteria: metabolic control of end product formation inThermoanaerobium brockii. J. Bacteriol. 146: 192–199Google Scholar
  10. Biesterveld S & Stams AJM (1990) Growth ofBacteroides xylanolyticus X5-1 in the presence and absence of a methanogen. In: Belaich JP, Bruschi M & Garcia JL (eds) Microbiology and biochemistry of strict anaerobes involved in interspecies hydrogen transfer (pp 365–368) Plenum Publishing Corporation, New YorkGoogle Scholar
  11. Biesterveld S, Kok MD, Dijkema C, Zehnder AJB and Stams AJM (1994a) Xylose catabolism inBacteroides xylanolyticus X5-1. Arch. Mirobiol. (In Press)Google Scholar
  12. Biesterveld S, Zehnder AJB and Stams AJM (1994) Regulation of product formation inBacteroides xylanolyticus X5-1 by interspecies electron transfer. Appl Environ Microbiol 60: 1347–1352Google Scholar
  13. Blomgren A, Hansen A & Svensson B (1990) Enrichment of a mesophilic, syntrophic bacterial consortium converting acetate to methane at high ammonium concentrations. In: Belaich JP, Bruschi M & Garcia JL (eds) Microbiology and biochemistry of strict anaerobes involved in interspecies hydrogen transfer (pp 225–234) Plenum Publishing Corporation, New YorkGoogle Scholar
  14. Boone DR (1991) Ecology of methanogenesis. In: Rogers JE & Whitman WB (eds) Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes (pp 57–70) American Society for Microbiology, WashingtonGoogle Scholar
  15. Boone DR & Bryant MP (1980) Propionate-degrading bacterium,Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl. Environ. Microbiol. 40: 626–632Google Scholar
  16. Boone DR, Johnson RL & Liu Y (1989) Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems, and applications in the measurement of KM for H2 and formate uptake. Appl. Environ. Microbiol. 55: 1735–1741Google Scholar
  17. Boone DR & Xun L (1987) Effects of pH, temperature and nutrients on propionate degradation by a methanogenic enrichment culture, Appl. Environ. Microbiol. 53: 1589–1592Google Scholar
  18. Bornstein BT & Barker HA (1948) The energy metabolism ofClostridium kluyveri and the synthesis of fatty acids. J. Biol. Chem. 172: 659–669Google Scholar
  19. Bryant MP & Boone DR (1987) Isolation and characterization ofMethanobacterium formicicum MF. Int. J. Syst. Bacteriol. 37: 171Google Scholar
  20. Bryant MP, Campbell LL, Reddy CA & Crabill MR (1967) Growth ofDesulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl. Environ. Microbiol. 33: 1162–1169Google Scholar
  21. Bryant MP, Wolin EA, Wolin MJ & Wolfe RS (1967)Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch. Mikrobiol. 59: 20–31Google Scholar
  22. Buckel W & Barker HA (1974) Two pathways of glutamate fermentation by anaerobic bacteria. J. Bacteriol. 117: 1248–1260Google Scholar
  23. Bull AT & Slater JH (1982) Microbial interactions and community structure. In: Bull AT & Slater JH (eds) Microbial interactions and communities (pp 13–44) Academic Press, LondonGoogle Scholar
  24. Chang R (1977) Physical chemistry with applications to biological systems. Macmillan Publishing Co., New YorkGoogle Scholar
  25. Chen M & Wolin MJ (1977) Influence of CH4 production byMethanobacterium ruminantium on the fermentation of glucose and lactate bySelenomonas ruminantium. Appl. Environ. Microbiol. 34: 756–759Google Scholar
  26. Cheng G, Plugge CM, Roelofsen W, Houwen FP & Stams AJM (1992)Selenomonas acidaminovorans sp. nov., a versatile thermophilic proton-reducing anaerobe able to grow by decarboxylation of succinate to propionate. Arch. Microbiol. 157: 169–175Google Scholar
  27. Chung KT (1976) Inhibitory effects of H2 on growth ofClostridium cellobioparum. Appl. Environ. Microbiol. 31: 342–348Google Scholar
  28. Conrad R, Schink B and Phelps TJ (1986) Thermodynamics of H2-consuming and H2-producing metabolic reactions in diverse methanogenic environments under in situ conditions. FEMS Microbiol. Ecol. 38: 353–360Google Scholar
  29. Cord-Ruwisch R, Seitz HJ & Conrad R (1988) The capacity of hydrogenotrophic anaerobic bacteria to complete traces of hydrogen depends on the redox potential of the terminal electron acceptors. Arch. Microbiol. 149: 350–357Google Scholar
  30. Crill PM, Harriss RC & Bartlett KB (1991) Methane fluxes from terrestrial wetland environments. In: Rogers JE & Whitman WB (eds) Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes (pp 175–187) American Society for Microbiology, WashingtonGoogle Scholar
  31. Dietrich G, Weiss N, Winter J (1988)Acetothermus paucivorans, gen.nov., sp.nov., a strictly anaerobic, thermophilic bacterium from sewage sludge, fermenting hexoses to acetate, CO2 and H2. Syst. Appl. Microbiol. 10: 174–179Google Scholar
  32. Dolfing J (1988) Acetogenesis. In: Zehnder AJB (ed) Biology of anaerobic microorganisms (pp 417–468) John Wiley & Sons, New YorkGoogle Scholar
  33. Dolfing J, Griffioen A, van Neerven ARW & Zevenhuizen (1985) Chemical and bacteriological composition of granular methanogenic sludge. Can. J. Microbiol. 31: 744–750Google Scholar
  34. Dubourguier HC, Prensier G & Albagnac G (1988) Structure and microbial activities of granular anaerobic sludge. In: Lettinga, G., A.J.B. Zehnder, J.T.C. Grotenhuis, L.W. Hulshoff Pol (eds) Granular anaerobic sludge; microbiology and technology (pp 18–33) Pudoc, WageningenGoogle Scholar
  35. Dubourguier HC, Samain E, Prensier G & Albagnac G (1986) Characterization of two strains ofPelobacter carbinolicus isolated from anaerobic digesters. Arch. Microbiol. 145: 248–253Google Scholar
  36. Dörner C (1992) Biochemie und Energetik der Wasserstoff-Freisetzung in der syntrophen Vergärung von Fettsäuren und Benzoat. Dissertation, University of TübingenGoogle Scholar
  37. Dwyer DF, Weeg-Aerssens E, Shelton DR & Tiedje JM (1988) Bioenergetic conditions of butyrate metabolism by a syntrophic, anaerobic bacterium in coculture with hydrogen-oxidizing methanogenic and sulfidogenic bacteria. Appl. Environ. Microbiol. 54: 1354–1359Google Scholar
  38. Evans WC & Fuchs G (1988) Anaerobic degradation of aromatic compounds. Ann. Rev. Microbiol. 42: 289–317Google Scholar
  39. Ferry JG & Wolfe RS (1976) Anaerobic degradation of benzoate to methane by a consortium. Arch. Microbiol. 107: 33–40Google Scholar
  40. Friedrich M, Laderer U & Schink B. (1991) Fermentative degradation of glycolic acid by defined syntrophic cocultures. Arch. Microbiol. 156: 398–404Google Scholar
  41. Friedrich M & Schink B (1993) Hydrogen formation from glycolate driven by reversed electron transport in membrane vesicles of a syntrophic glycolate-oxidizing bacterium. Eur. J. Biochem. 217: 233–240Google Scholar
  42. Gottschalk G (1985) Bacterial Metabolism. Second Edition. Springer Verlag, New YorkGoogle Scholar
  43. Gottschalk G & Blaut M (1990) Generation of proton and sodium motive forces in methanogenic bacteria. Biochim. Biophys. Acta 1018: 263–266Google Scholar
  44. Grotenhuis JTC, Smit M, Plugge CM, Xu Y, Van Lammeren AAM, Stams AJM, & Zehnder AJB (1991) Bacteriological composition and structure of granular sludge adapted to different substrates. Appl Environ Microbiol 57: 1942–1949Google Scholar
  45. Gujer W & Zehnder AJB (1982) Conversion processes in anaerobic digestion. Wat. Sci. Technol. 15: 127–167Google Scholar
  46. Guyot JP & Brauman A (1986) Methane production from formate by syntrophic association ofMethanobacterium bryantii andDesulfovibrio vulgaris JJ. Appl. Environ. Microbiol. 52: 1436–1437Google Scholar
  47. Harmsen HJM, Wullings B, Akkermans ADL, Ludwig W & Stams AJM (1993) Phylogenetic analysis ofSyntrophobacter wolinii reveals a relationship with sulfate-reducing bacteria. Arch. Microbiol. 160: 238–240Google Scholar
  48. Henson JM & Smith PH (1985) Isolation of a butyrate-utilizing bacterium in coculture withMethanobacterium thermoautotrophicum from a thermophilic digestor. Appl. Environ. Microbiol. 49: 1461–1466Google Scholar
  49. Holliger C, Stams AJM & Zehnder AJB (1988) Anaerobic degradation of recalcitrant compounds. In: Hall ER & Hobson PN (eds) Anaerobic digestion 1988, Fifth International Symposium on Anaerobic Digestion, Bologna (pp 211–225) Pergamon Press, OxfordGoogle Scholar
  50. Houwen FP, Dijkema C, Schoenmakers CHH, Stams AJM & Zehnder AJB (1987)13C-NMR study of propionate degradation by a methanogenic coculture. FEMS Microbiol. Lett. 41: 269–274Google Scholar
  51. Houwen FP, Dijkema C, Stams AJM & Zehnder AJB (1991) Propionate metabolism in anaerobic bacteria; determination of carboxylation reactions with13C-NMR spectroscopy. Biochim. Biophys. Acta 1056: 126–132Google Scholar
  52. Houwen FP, Plokker J, Dijkema C & Stams AJM (1990) Enzymatic evidence for involvement of the methylmalonyl-CoA pathway in propionate oxidation bySyntrophobacter wolinii. Arch. Microbiol. 155: 52–55Google Scholar
  53. Huser BA, Wuhrmann K & Zehnder AJB (1982)Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium. Arch. Microbiol. 132: 1–9Google Scholar
  54. Ianotti EL, Kafkewitz D, Wolin MJ, & Bryant MP (1973) Glucose fermentation products byRuminococcus albus grown in continuous culture withVibrio succinogenes: changes caused by interspecies transfer of H2. J. Bacteriol. 114: 1231–1240Google Scholar
  55. Iza J (1991) Fluidized bed reactors for anaerobic wastewater treatment. Water. Sci. Technol. 24: 109–132Google Scholar
  56. Jetten MSM, Stams AJM & Zehnder AJB (1990) Acetate threshold values and acetate activating enzymes in methanogenic bacteria. FEMS Microbiol. Ecol. 73: 339–344Google Scholar
  57. Jetten MSM, Stams AJM & Zehnder AJB (1992) Methanogenesis from acetate: a comparison of the acetate metabolism inMethanothrix soehngenii andMethanosarcina spp. FEMS Microbiol. Rev. 88: 181–198Google Scholar
  58. Jones WJ (1991) Diversity and physiology of methanogens. In: Rogers JE & Whitman WB (eds) Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes (pp 39–55) American Society for Microbiology, WashingtonGoogle Scholar
  59. Kaesler B & Schönheit P (1989) The sodium cycle in methanogenesis. CO2 reduction to the formaldehyde level in methanogenic bacteria is driven by a primary electrochemical potential of Na+ generated by formaldehyde reduction to CH4. Eur. J. Biochem. 186: 309–316Google Scholar
  60. Kamagata Y, Kitagawa N, Tasaki M, Nakamura K & Mikami E (1992) Degradation of benzoate by an anaerobic consortium and some properties of a hydrogenotrophic methanogen and sulfate-reducing bacterium in the consortium. J. Ferment. Bioeng. 73: 213–218Google Scholar
  61. Kasper HF, Holland AJ & Mountfort DO (1987) Simultaneous butyrate oxidation bySyntrophomonas wolfei and catalytic olefin reduction in the absence of interspecies hydrogen transfer. Arch. Microbiol. 147: 334–339Google Scholar
  62. Knoll G & Winter J (1987) Anaerobic degradation of phenol in sewage sludge. Appl. Microbiol. Biotechnol. 25: 384–391Google Scholar
  63. Koch ME, Dolfing J, Wuhrmann K & Zehnder AJB (1983) Pathways of propionate degradation by enriched methanogenic cultures. Appl. Environ. Microbiol. 45: 1411–1414Google Scholar
  64. Kremer DR & Hansen TA (1988) Pathway of propionate degradation inDesulfobulbus propionicus. FEMS Microbiol. Lett. 49: 273–277Google Scholar
  65. Kremer DR, Nienhuis-Kuiper HE & Hansen TA (1988) Ethanol dissimilation inDesulfovibrio. Arch. Microbiol. 150: 552–557Google Scholar
  66. Kröger A, Geisler V, Lemma E, Theis F & Lenger R (1993) Bacterial fumarate respiration. Arch. Microbiol. 158: 311–314Google Scholar
  67. Krumholz LR, Bryant MP (1986)Syntrophococcus sucromutans sp.nov.gen.nov. uses carbohydrates as electron donors and formate, methoxymonobenzoids orMethanobrevibacter as electron acceptor systems. Arch. Microbiol. 143: 313–318Google Scholar
  68. Laanbroek HJ, Abee T & Voogd IL (1982) Alcohol conversions byDesulfobulbus propionicus Lindhorst in the presence and absence of sulphate and hydrogen. Arch. Microbiol. 133: 178–184Google Scholar
  69. Lamed R & Zeikus JG (1980.). Ethanol production by thermophilic bacteria: relationship between fermentation product yields of and catabolic enzyme activities inClostridium thermocellum andThermoanaerobium brockii. J. Bacteriol. 144: 569–578Google Scholar
  70. Latham MJ, & Wolin MJ (1977) Fermentation of cellulose byRuminococcus flavefaciens in the presence and absence ofMethanobacterium ruminantium. Appl. Environ. Microbiol. 34: 297–301Google Scholar
  71. Lee MJ & Zinder SH (1988a) Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2/CO2. Appl. Environ. Microbiol. 54: 124–129Google Scholar
  72. —— (1988b) Hydrogen partial pressures in a thermophilic acetateoxidizing methanogenic coculture. Appl. Environ. Microbiol. 54: 1457–1461Google Scholar
  73. —— (1988c) Carbon monoxide pathway enzyme activities in a thermophilic anaerobic bacterium grown acetogenically and in a syntrophic acetate-oxidizing coculture. Arch. Microbiol. 150: 513–518Google Scholar
  74. Lettinga G & Hulshoff-Pol LW (1991) UASB process design for various types of waste waters. Wat. Sci. Tech. 24:88–107Google Scholar
  75. Londry KL & Fedorak PM (1992) Benzoic intermediates in the anaerobic biodegradation of phenol. Can J. Microbiol. 38: 1–11Google Scholar
  76. Mah RA, Xun LY, Boone DR, Ahring B, Smith PH, Wilkie A (1990) Methanogenesis from propionate in sludge and enrichment systems. In: Belaich JP, Bruschi M & Garcia JL (eds) Microbiology and biochemistry of strict anaerobes involved in interspecies hydrogen transfer (pp 99–119) Plenum Press, New YorkGoogle Scholar
  77. Marvin-Sikkema FD, Rees E, Kraak MN, Gottschal JC & Prins RA (1993) Influence of metronidazole, CO, CO2, and methanogens on the fermentative metabolism of the anaerobic fungusNeocallimastix sp. strain L2. Appl. Environ. Microbiol. 59: 2678–2683Google Scholar
  78. Marvin-Sikkema FD, Richardson AJ, Stewart CS, Gottschal JC & Prins RA (1990) Influence of hydrogen-consuming bacteria on cellulose degradation by anaerobic fungi. Appl. Environ. Microbiol. 56: 3793–3797Google Scholar
  79. Matthies C & Schink B (1993) Anaerobic degradation of long-chain dicarboxylic acids by methanogenic enrichment cultures. FEMS Microbiol. Lett. 111: 177–182Google Scholar
  80. McInerney MJ (1988) Anaerobic hydrolysis and fermentation of fats and proteins. In: Zehnder AJB (ed) Biology of anaerobic microorganisms (pp 373–415) John Wiley & sons, New YorkGoogle Scholar
  81. McInerney MJ, Bryant MP, Hespell RB & Costerton JW (1981)Syntrophomonas wolfei gen.nov.sp.nov, an anaerobic syntrophic, fatty acid-oxidizing bacterium. Appl. Environ. Microbiol. 41: 1029–1039Google Scholar
  82. McInerney MJ, Bryant MP & Pfennig N (1979) Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch. Microbiol. 122: 129–135Google Scholar
  83. Miller TL (1991) Biogenic sources of methane. In: Rogers JE & Whitman WB (eds) Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes (pp 175–187) American Society for Microbiology, WashingtonGoogle Scholar
  84. Mohn WM & Tiedje JM (1992) Microbial reductive dechlorination. Microbiol. Rev. 56: 482–507Google Scholar
  85. Mountfort DO, Brulla JW, Krumholz LR & Bryant MP (1984)Syntrophus buswellii gen. nov., sp. nov.: a benzoate cataboliser from methanogenic ecosystems. Int. J. Syst. Bacteriol. 34: 216–217Google Scholar
  86. Mountfort DO & Bryant MP (1982) Isolation and characterization of an anaerobic benzoate-degrading bacterium from sewage sludge. Arch. Microbiol. 133: 249–256Google Scholar
  87. Mucha H, Lingens F & Trösch W (1988) Conversion of propionate to acetate and methane by syntrophic consortia. Appl. Microbiol. Biotechnol. 27: 581–586Google Scholar
  88. Nagase M & Matsuo T (1982) Interaction between amino-acid degrading bacteria and methanogenic bacteria in anaerobic digestion. Biotechnol. Bioeng. 24: 2227–2239Google Scholar
  89. —— (1987) Properties ofDesulfovibrio carbinolicus sp. nov. and other sulfate reducing bacteria isolated from an anaerobic purification plant. Appl. Environ. Microbiol. 53: 802–809Google Scholar
  90. Nanninga HJ & Gottschal JC (1985) Amino acid fermentation and hydrogen transfer in mixed cultures. FEMS Microbiol. Ecol. 31: 261–269Google Scholar
  91. Örlygsson J, Houwen FP & Svensson BH (1993) Anaerobic degradation of protein and the role of methane formation in steady state thermophilic enrichment cultures. Swedish J. Agric. Res. 23: 45–54Google Scholar
  92. Oremland RS (1988) Biogeochemistry of methanogenic bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms (pp 641–706) John Wiley & Sons, New YorkGoogle Scholar
  93. Oude Elferink SJWH, Visser A, Hulshoff Pol LW & Stams AJM (1994) Sulfate reduction in methanogenic bioreactors. FEMS Microbiol. Rev. (In Press)Google Scholar
  94. Patel GB (1984) Characterization and nutritional properties of methanotrix concillii sp. nov., a mesophilic aceticlastic methanogen. Can. J. Microbiol. 30: 1383–1396Google Scholar
  95. Patel GB & Sprott GD (1990)Methanosaeta concilii gen. nov., sp. nov., (‘Methanothrix concilii’) andMethanosaeta thermoacetophila nom. rev., comb. nov. Int. J. Syst. Bacteriol. 40: 79–82Google Scholar
  96. Platen H & Schink B (1987) Methanogenic degradation of acetone by an enrichment culture. Arch. Microbiol. 149: 136–141Google Scholar
  97. Plugge CM, Dijkema C & Stams AJM (1993) Acetyl-CoA cleavage pathway in a syntrophic propionate oxidizing bacterium growing on fumarate in the absence of methanogens. FEMS Microbiol. Lett. 110: 71–76Google Scholar
  98. Plugge CM, Grotenhuis JTC & Stams AJM (1990) Isolation and characterization of an ethanol-degrading bacterium from methanogenic granular sludge. In: Belaich JP, Bruschi M & Garcia JL (eds) Microbiology and biochemistry of strict anaerobes involved in interspecies hydrogen transfer (pp 439–442) Plenum Press, New YorkGoogle Scholar
  99. Robbins JE (1988) A proposed pathway for catabolism of propionate in methanogenic cocultures. Appl. Environ. Microbiol. 54: 1300–1301Google Scholar
  100. Robinson JA & Tiedje JM (1984) Competition between sulphate-reducing and methanogenic bacteria for H2 under resting and growing conditions. Arch. Microbiol. 137: 26–32Google Scholar
  101. Roy F, Samain E, Dubourguier HC & Albagnac G (1986)Syntrophomonas sapovorans sp.nov. a new obligately proton-reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids. Arch. Microbiol. 145: 142–147Google Scholar
  102. Samain E, Albagnac G, Dubourguier HC & Touzel JP (1982) Characterization of a new propionic acid bacterium that ferments ethanol and displays a growth factor dependent associations with a Gramnegative homoacetogen. FEMS Microbiol. Lett. 15: 69–74Google Scholar
  103. Samain E, Dubourguier HC & Albagnac G (1984) Isolation and characterization ofDesulfobulbus elongatus sp.nov., from a mesophilic industrial digestor. Syst. Appl. Microbiol. 5: 391–401Google Scholar
  104. Samain E, Dubourguier HC, LeGall J & Albagnac G (1986) Regulation of hydrogenase activity in the propionate-oxidizing sulfate reducing bacteriumDesulfobulbus elongatus. In: Dubourguier HC, Albagnac G, Montreuil J, Romond C, Sautiere & Guillaume J (eds) Biology of anaerobic bacteria (pp 23–27) Elsevier, AmsterdamGoogle Scholar
  105. Schauder R, Eikmanns B, Thauer RK, Widdel F & Fuchs G (1986) Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle. Arch. Microbiol. 145: 162–172Google Scholar
  106. Schauder R, Preuss A, Jetten M & Fuchs G (1989) Oxidative and reductive acetyl CoA/carbon monoxide pathway inDesulfobacterium autotrophicum. 2. Demonstration of the enzymes of the pathway and comparison of CO dehydrogenase. Arch. Microbiol. 151: 84–89Google Scholar
  107. Schauer NL, Brown DP & Ferry JG (1982) Kinetics of formate metabolism inMethanobacterium formicicum andMethanospirillum hungatei. Appl. Environ. Microbiol. 44: 540–554Google Scholar
  108. Scheifinger CC, Linehan B, & Wolin MJ (1975) H2 production bySelenomonas ruminantium in the absence and presence of methanogenic bacteria. Appl. Microbiol. 29: 480–483Google Scholar
  109. Schink B (1984) Fermentation of 2,3-butanediol byPelobacter carbinolicus sp.nov. andPelobacter propionicus sp.nov., and evidence for propionate formation from C2 compounds. Arch. Microbiol. 137: 33–41Google Scholar
  110. —— (1985) Fermentation of acetylene by an obligate anaerobe,Pelobacter acetylenicus sp. nov. Arch. Microbiol. 142: 295–301Google Scholar
  111. —— (1992) Syntrophism among prokaryotes. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer KH (eds) The Prokaryotes (pp 276–299) Springer Verlag, New YorkGoogle Scholar
  112. Schink B, Brune A & Schnell S (1992) Anaerobic degradation of aromatic compounds. In: Winkelmann G (ed) Microbial degradation of natural products (pp 219–242) VCH Verlagsgesellschaft, WeinheimGoogle Scholar
  113. Schink B & Stieb M (1983) Fermentative degradation of polyethylene glycol by a new strictly anaerobic Gram-negative nonsporeforming bacterium,Pelobacter venetianus sp. nov. Appl. Environ. Microbiol. 45: 1905–1923Google Scholar
  114. Schink B & Thauer RK (1988) Energetics of syntrophic methane formation and the influence of aggregation. In: Lettinga G, Zehnder AJB, Grotenhuis JTC & Hulshoff Pol LW (eds), Granular anaerobic sludge; microbiology and technology (pp 5–17) Pudoc, WageningenGoogle Scholar
  115. Schmidt JE & Ahring BK (1993) Effects of hydrogen and formate on the degradation of propionate and butyrate in thermophilic granules from an upflow anaerobic sludge blanket reactor. Appl. Environ. Microbiol. 59: 2546–2551Google Scholar
  116. Schnell S & Schink B (1992) Anaerobic degradation of 3-aminobenzoate by a newly isolated sulfate reducer and a methanogenic enrichment culture. Arch. Microbiol. 158: 328–334Google Scholar
  117. Scholten-Koerselman I, Houwaard F, Janssen P & Zehnder AJB (1986)Bacteroides xylanolyticus sp. nov., a xylanolytic bacterium from methane producing cattle manure. Antonie van Leeuwenhoek 52: 543–554Google Scholar
  118. Seitz HJ, Schink B & Conrad R (1988) Thermodynamics of hydrogen metabolism in methanogenic cocultures degrading ethanol or lactate. FEMS Microbiol. Lett 55: 119–124Google Scholar
  119. Seitz HJ, Schink B, Pfennig N & Conrad R (1990) Energetics of syntrophic ethanol oxidation in defined chemostat cocultures. 2. Energy sharing in biomass production. Arch. Microbiol. 155: 89–93Google Scholar
  120. Shelton DR & Tiedje JM (1984) Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid. Appl. Environ. Microbiol. 48: 840–848Google Scholar
  121. Soutschek E, Winter J, Schindler F & Kandler O (1984)Acetomicrobium flavidum, gen.nov. sp.nov., a thermophilic, anaerobic bacterium from sewage sludge, forming acetate, CO2 and H2 from glucose. Syst. Appl. Microbiol. 5: 377–390Google Scholar
  122. Spormann AM & Thauer RK (1988) Anaerobic acetate oxidation to CO2 byDesulfotomaculum acetoxidans. Demonstration of the enzymes required for the operation of an oxidative acetyl-CoA/carbon monoxide dehydrogenase pathway. Arch. Microbiol. 150: 374–380Google Scholar
  123. Stams AJM, Grolle KCF, Frijters CTMJ & Van Lier JB (1992) Enrichment of thermophilic propionate-oxidizing bacteria in syntrophy withMethanobacterium thermoautotrophicum orMethanobacterium thermoformicicum. Appl. Environ. Microbiol. 58: 346–352Google Scholar
  124. Stams AJM, Grotenhuis JTC & Zehnder AJB (1989) Structure function relationship in granular sludge. In: Hattori T, Ishida Y, Maruyama, Morita RY & Uchida A (eds) Recent advances in microbial Ecology (pp 440–445) Japan Scientific Societies Press, TokyoGoogle Scholar
  125. Stams AJM & Hansen TA (1984) Fermentation of glutamate and other compounds byAcidaminobacter hydrogenoformans gen.nov. sp.nov, an obligate anaerobe isolated from black mud. Studies with pure cultures and mixed cultures with sulfate-reducing and methanogenic bacteria. Arch. Microbiol. 137: 329–337Google Scholar
  126. Stams AJM, Kremer DR, Nicolay K, Weenk GH & Hansen TA (1984) Pathway of propionate formation inDesulfobulbus propionicus. Arch. Microbiol. 139: 167–173Google Scholar
  127. Stams AJM & Plugge CM (1990) Isolation of syntrophic bacteria on metabolic intermediates. In: Belaich JP, Bruschi M & Garcia JL (eds) Microbiology and biochemistry of strict anaerobes involved in interspecies hydrogen transfer (pp 473–476) Plenum Publishing Corporation, New YorkGoogle Scholar
  128. Stams AJM, Van Dijk J, Dijkema C & Plugge CM (1993) Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl. Environ. Microbiol. 59: 1114–1119Google Scholar
  129. Stams AJM & Zehnder AJB (1990) Ecological impact of syntrophic alcohol and fatty acid utilization. In: Belaich JP, Bruschi M & Garcia JL (eds) Microbiology and biochemistry of strict anaerobes involved in interspecies hydrogen transfer (pp 87–98) Plenum Publishing Corporation, New YorkGoogle Scholar
  130. Stieb M & Schink B (1985) Anaerobic degradation of fatty acids byClostridium bryantii sp. nov., a sporeforming obigately syntrophic bacterium. Arch. Microbiol. 140: 387–390Google Scholar
  131. Szewzyk U & Schink B (1989) Degradation of hydroquinone, gentisate, and benzoate by a fermenting bacterium in pure or defined mixed cultures. Arch. Microbiol. 151: 541–545Google Scholar
  132. Tschech A & Schink B (1986) Fermentative degradation of monohydroxybenzoates by defined syntrophic cocultures. Arch. Microbiol. 145: 396–402Google Scholar
  133. Thauer RK (1990) Energy metabolism of methanogenic bacteria. Biochim. Biophys. acta 1018: 256–259Google Scholar
  134. Thauer RK, Jungermann K & Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100–180Google Scholar
  135. Thauer RK & Morris JG (1984) Metabolism of chemotrophic anaerobes: old views and new aspects. In: Kelly DP & Carr NG (eds) The microbe 1984: part 2. Prokaryotes and eukaryotes (pp 123–168) Cambridge University Press, CambridgeGoogle Scholar
  136. Thiele JH & Zeikus JG (1987) Interactions between hydrogen- and formate-producing bacteria and methanogens during anaerobic digestion, In: Erickson LE & Fung D (eds) Handbook on anaerobic fermentations (pp 537–595) Marcel Dekker, New YorkGoogle Scholar
  137. —— (1988) Control of interspecies electron flow during anaerobic digestion: significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs. Appl. Environ. Microbiol. 54: 20–29Google Scholar
  138. Thiele JH, Chartrain M & Zeikus JG (1988) Control of interspecies electron flow during anaerobic digestion: role of the floc formation. Appl. Environ. Microbiol. 54: 10–19Google Scholar
  139. Tholozan JL, Samain E, Grivet JP, Moletta R, Dubourguier HC & Albagnac G (1988) Reductive carboxylation of propionate into butyrate in methanogenic ecosystems. Appl. Environ. Microbiol. 54: 441–445Google Scholar
  140. Van Lier JB, Grolle KCF, Frijters CTMJ, Stams AJM & Lettinga G (1993) Effect of acetate, propionate and butyrate on the thermophilic anaerobic degradation of propionate by methanogenic sludge and defined cultures. Appl. Environ. Microbiol. 59: 1003–1011Google Scholar
  141. Visser A, Beeksma I, van der Zee A, Stams AJM & Lettinga G (1994) Anaerobic degradation of volatile fatty acids at different sulfate concentrations. Appl. Microbiol. Biotechnol. 40: 549–556Google Scholar
  142. Vogels GD, Keltjens JT & van der Drift C (1988) Biochemistry of methane formation. In: Zehnder AJB (ed) Biology of anaerobic microorganisms (pp 707–770) John Wiley & Sons, New YorkGoogle Scholar
  143. Weimer PJ & Zeikus JG (1977) Fermentation of cellulose and cellobiose byClostridium thermocellum in the presence and absence ofMethanobacterium thermoautotrophicum. Appl. Environ. Microbiol. 33: 289–297Google Scholar
  144. Whitman WB, Bowen TL & Boone DR (1992) The methanogenic bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer KH (eds) The Prokaryotes (pp 719–768) Springer Verlag, New YorkGoogle Scholar
  145. Widdel F (1988) Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms (pp 469–586) John Wiley & Sons, New YorkGoogle Scholar
  146. Widdel F & Pfennig N (1982) Studies on dissimilatory sulfatereducing bacteria that decompose fatty acids. II. Incomplete oxidation of propionate byDesulfobulbus propionicus gen. nov. sp. nov. Arch. Microbiol. 131: 360–365Google Scholar
  147. Wildenauer FX & Winter J (1986) Fermentation of isoleucine and arginine by pure and syntrophic cultures ofClostridium sporogenes. FEMS Microbiol. Ecol. 38: 373–379Google Scholar
  148. Winter J, Schindler F & Wildenauer FX (1987) Fermentation of alanine and glycine by pure and syntrophic cultures ofClostridium sporogenes. FEMS Microbiol. Ecol. 45: 153–161Google Scholar
  149. Winter J & Wolfe RS (1980) Methane formation from fructose by syntrophic associations ofAcetobacterium woodii and different strains of methanogens. Arch. Microbiol. 124: 73–79Google Scholar
  150. Wofford NQ, Beaty PS & McInerney MJ (1986) Preparation of cellfree extracts and the enzymes involved in fatty acid metabolism inSyntrophomonas wolfei. J. Bacteriol. 167: 179–185Google Scholar
  151. Wolin MJ (1976) Interactions between H2-producing and methane-producing species. In: Schlegel HG, Gottschalk G & Pfennig N (eds) Microbial formation and utilization of gases (H2, CH4, CO) (pp 14–15) Goltze, GöttingenGoogle Scholar
  152. Wolin MJ (1982) Hydrogen transfer in microbial communities. In: Bull AT & Slater JH (eds) Microbial interactions and communities (pp 323–356) Academic Press, LondonGoogle Scholar
  153. Wu WM, Rickley RF, Jain MK & Zeikus JG (1993) Energetics and regulations of formate and hydrogen metabolism byMethanobacterium formicicum. Arch. Microbiol. 159: 57–65Google Scholar
  154. Young JC (1991) Factors affecting the design and performance of upflow anaerobic filters. Wat. Sci. Tech. 24: 133–155Google Scholar
  155. Zehnder AJB & Wuhrmann K (1977) Physiology of aMethanobacterium Strain AZ. Arch. Microbiol. 111: 199–205Google Scholar
  156. Zeikus JG & Henning DL (1975)Methanobacterium arbophilicum sp.nov. An obligate anaerobe isolated from wetwood of living trees. Antonie van Leeuwenhoek 41: 543–552Google Scholar
  157. Zhao H, Yang D, Woese CR & Bryant MP (1989) Assignment of the syntrophic, fatty acid-degrading anaerobeClostridium bryantii toSyntrophospora bryantii gen. nov., comb. nov. Int. J. Syst. Bacterial. 40: 40–44Google Scholar
  158. —— (1993) Assignment of fatty acid-β-oxidizing syntrophic bacteria to Syntrophomonadaceae fam. nov. on the basis of 16S rRNA sequences. Int. J. Syst. Bacterial. 43: 278–286Google Scholar
  159. Zindel U, Freudenberg W, Reith M, Andreesen JR, Schnell J & Widdel F (1988)Eubacterium acidaminophilum sp.nov., a versatile amino acid degrading anaerobe producing or utilizing H2 or formate. Description and enzymatic studies. Arch. Microbiol. 150: 254–266Google Scholar
  160. Zinder SH (1994) Syntrophic acetate oxidation and ‘reversible acetogenesis’ In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York (In Press)Google Scholar
  161. Zinder SH, Caldwell SC, Anguish T, Lee M & Koch M (1984) Methanogenesis in a thermophilic (58 °C) anaerobic digestor:Methanothrix sp. as an important aceticlastic methanogen. Appl. Environ. Microbiol. 47: 796–807Google Scholar
  162. Zinder SH & Koch M (1984) Non-acetoclastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch. Microbiol. 138: 263–272Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Alfons J. M. Stams
    • 1
  1. 1.Department of MicrobiologyWageningen Agricultural UniversityWageningenThe Netherlands

Personalised recommendations