Advertisement

Antonie van Leeuwenhoek

, Volume 66, Issue 1–3, pp 223–237 | Cite as

Glycine metabolism in anaerobes

  • Jan R. Andreesen
Research Articles

Abstract

Some strict anaerobic bacteria catalyze with glycine as substrate an internal Stickland reaction by which glycine serves as electron donor being oxidized by glycine-cleavage system or as electron acceptor being reduced by glycine reductase. In both cases, energy is conserved by substrate level phosphorylation. Except for the different substrate-activating proteins P B , reduction of sarcosine or betaine to acetyl phosphate involves inEubacterium acidaminophilum the same set of proteins as observed for glycine, e.g. a unique thioredoxin system as electron donor and an acetyl phosphate-forming protein P c interacting with the intermediarily formed Secarboxymethylselenoether bound to protein P A .

Key words

Stickland reaction Clostridum Eubacterium Peptostreptococcus glycine sarcosine creatine betaine purines theronine proline glycine cleavage system glycine reductase selenoprotein thioredoxin system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreesen JR (1994) Acetate via glycine: a different form of acetogenesis. In: Drake HL (Ed) Acetogenesis (pp 568–626). Chapman & Hall Inc., New YorkGoogle Scholar
  2. Andreesen JR, Schaupp A, Neurauter C, Brown A & Ljungdahl LG (1973) Fermentation of glucose, fructose, and xylose byClostridium thermoaceticum: effect of metals on growth, yield, enzymes, and the synthesis of acetate from CO2. J. Bacteriol. 114: 743–751Google Scholar
  3. Arkowitz RA & Abeles RH (1989) Identification of acetyl phosphate as the product of clostridial glycine reductase: evidence for an acyl enzyme intermediate. Biochemistry 28: 4639–4644Google Scholar
  4. Arkowitz RA & Abeles RH (1990) Isolation and characterization of a covalent selenocysteine intermediate in the glycine reductase system. J. Am. Chem. Soc. 112: 870–872Google Scholar
  5. Arkowitz RA & Abeles RH (1991) Mechanism of action of clostridial glycine reductase: isolation and characterization of a covalent acetyl enzyme intermediate. Biochemistry 30: 4090–4097Google Scholar
  6. Bader T, Rauschenbach P & Simon H (1982) On a hitherto unknown fermentation path of several amino acids by proteolytic clostridia. FEBS Lett. 140: 67–72Google Scholar
  7. Barker HA (1961) Fermentations of nitrogenous organic compounds. In: Gunsalus IC, Stanier RY (Eds) The bacteria, Vol II (pp 151–207). Academic Press, New YorkGoogle Scholar
  8. Barker HA (1981) Amino acid degradation by anaerobic bacteria. Annu. Rev. Biochem. 50: 23–40Google Scholar
  9. Barker HA & Beck JV (1941) The fermentative decomposition of purines byClostridium acidi-urici andClostridium cylindrosporum. J. Biol. Chem. 141: 3–27Google Scholar
  10. Barker HA & Elsden SR (1947) Carbon dioxide utilization in the formation of glycine and acetic acid. J. Biol. Chem. 167: 619–620Google Scholar
  11. Barker HA, Ruben S & Beck JV (1940) Radioactive carbon as an indicator of carbon dioxide reaction. IV. The synthesis of acetic acid from CO2 byClostridium acidi-urici. Proc. Natl. Acad. Sci. (USA) 26: 477–482Google Scholar
  12. Barker HA, Volcani BE & Cardon BP (1948) Tracer experiments on the mechanism of glycine fermentation byDiplococcus glycinophilus. J. Biol. Chem. 173: 803–804Google Scholar
  13. Barnard GF & Akhtar M (1979) Mechanistic and stereochemical studies on the glycine reductase ofClostridium sticklandii. Eur. J. Chem. 99: 593–603Google Scholar
  14. Beuscher HU & Andreesen JR (1984)Eubacterium angustum sp.nov., a Gram-positive, anaerobic, non-sporeforming, obligate purine fermenting organism. Arch. Microbiol. 140: 2–8Google Scholar
  15. Blödorn B (1993) Isolierung eines 63 kDa-Proteins und vergleichende Charakterisierungen mit der Acetat-Kinase ausEubacterium acidaminophilum. Diploma thesis, University of GöttingenGoogle Scholar
  16. Bourguignon J, Vauclare P, Merand V, Neuburger M & Douce R (1993) Glycine decarboxylasse complex from higher plants. Molecular cloning, tissue distribution and mass spectrometry analyses of the T-protein. Eur. J. Chem. 217: 377–386Google Scholar
  17. Breznak JA (1992) The genusSporomusa. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer KH (Eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, Vol 2 (pp 2014–2021). Springer Verlag, New YorkGoogle Scholar
  18. Britz ML & Wilkinson RG (1982) Leucine dissimilation to isovaleric and isocaproic acids by cell suspensions of amino acid fermenting anaerobes: the Stickland reaction revisited. Can. J. Microbiol. 28: 291–300Google Scholar
  19. Brookfield DE, Green J, Ali ST, Machado RS & Guest JR (1991) Evidence for two protein-lipoylation activities inEscherichia coli. FEBS Lett. 295: 13–16Google Scholar
  20. Buckel W (1990) Amino acid fermentation: coenzyme B12-dependent and -independent pathways. In: Hauska G, Thauer R (Eds) The molecular basis of bacterial metabolism (pp 21–30). Springer Verlag, BerlinGoogle Scholar
  21. Cardon BP & Barker HA (1946) Two new amino-acid-fermenting bacteria,Clostridium propionicum andDiplococcus glycinophilus. J. Bacteriol. 52: 629–634Google Scholar
  22. Cardon BP & Barker HA (1947) Amino acid fermentations byClostridium propionicum andDiplococcus glycinophilus. Arch. Biochem. 12: 165–180Google Scholar
  23. Champion AB & Rabinowitz JC (1977) Ferredoxins and formyltetrahydrofolate synthetase: comparative studies withClostridium acidiurici, Clostridium cylindrosporum, and newly isolated anaerobic uric acid-fermenting strains. J. Bacteriol. 132: 1003–1020Google Scholar
  24. Claas JU (1991) Isolierung und Charakterisierung von Ferredoxin und Thioredoxin und deren Einbindung in den Elektronentransport vonEubacterium acidaminophilum. Diploma thesis, University of GöttingenGoogle Scholar
  25. Cone JE, Del Rio RM & Stadtman TC (1977) Clostridial glycine reductase complex. Purification and characterization of the selenoprotein component. J. Biol. Chem. 252: 5337–5344Google Scholar
  26. Costilow RN (1977) Selenium requirement for the growth ofClostridium sporogenes with glycine as the oxidant in Stickland reaction. J. Bacteriol. 131: 366–368Google Scholar
  27. Csonka LN (1989) Physiological and genetic respones of bacteria to osmotic stress. Microbiol. Rev. 53: 121–147Google Scholar
  28. Dainty RH (1970) Purification and properties of threonine aldolase fromClostridium pasteurianum. Biochem. J. 117: 585–592Google Scholar
  29. Dienes L & Zamacnik PC (1952) Transformation of bacteria into L-forms by amino acids. J. Bacteriol. 64: 770–771Google Scholar
  30. Dietrichs D & Andrcesen JR (1990) Purification and comparative studies on dihydrolipoamide dehydrogenases from anaerobic glycine utilizing bacteriaPeptostreptococcus glycinophilus, Clostridium cylindrosporum, andClostridium sporogenes. J. Bacteriol. 172: 243–251Google Scholar
  31. Dietrichs D, Bahnweg M, Mayer F & Andreesen JR (1991a) Peripheral localization of the dihydrolipoaminde dehydrogenase in the purinolytic anaerobeClostridium cylindrosporum. Arch. Microbiol. 155: 412–414Google Scholar
  32. Dietrichs D, Meyer M, Rieth M & Andreesen JR (1991b) Interaction of selenoprotein Pa and the thioredoxin system, components of the NADPH-dependent reduction of glycine inEubacterium acidaminophilum andClostridium litorale. J. Bacteriol. 173: 5983–5991Google Scholar
  33. Dietrichs D, Meyer M, Schmidt B & Andreesen JR (1990) Purification of NADPH-dependent electron-transferring flavoproteins and N-terminal protein sequence data of dihydrolipoamide dehydrogenases from anaerobic, glycine-utilizing bacteria. J. Bacteriol. 172: 2088–2095Google Scholar
  34. Dürre P & Andreesen JR (1982a) Selenium-dependent growth and glycine fermentation byClostridium purinolyticum. J. Gen. Microbiol. 128: 1457–1466Google Scholar
  35. Dürre P & Andreesen JR (1982b) Separation and quantitation of purines and their anaerobic and aerobic degradation products by high-pressure liquid chromatography. Anal. Biochem. 123: 32–40Google Scholar
  36. Dürre P & Andreesen JR (1983) Purine and glycine metabolism by purinolytic clostridia. J. Bacteriol. 154: 192–199Google Scholar
  37. Dürre P, Spahr R & Andreesen JR (1983) Glycine fermentation via glycine reductase inPeptococcus glycinophilus andPeptococcus magnus. Arch. Microbiol. 134: 127–135Google Scholar
  38. Eklund H, Gleason FK & Holmgren A (1991) Structural and functional relations among thioredoxins of different species. Proteins: Struct. Funct. Genet. 11: 13–28Google Scholar
  39. Elsden SR & Hilton MG (1979) Amino acid utilization patterns in clostridial taxonomy. Arch. Microbiol. 123: 137–141Google Scholar
  40. Fendrich C, Hippe H & Gottschalk G (1990)Clostridium halophilum sp. nov. andC. litorale sp. nov., an obligate halophilic and marine species degrading betaine in the Stickland reaction. Arch. Microbiol. 154: 127–132Google Scholar
  41. Ferris JP, Joshi PC, Edelson EH & Lawless JG (1978) HCN: A plausible source of purines, pyrimidines and amino acids on the primitive earth. J. Mol. Evol 11: 293–311Google Scholar
  42. Finkelstein JD & Martin JJ (1984) Methionine metabolism in mammals. Distribution of homocysteine between competing pathways. J. Biol. Chem. 259: 9508–9513Google Scholar
  43. Foubert EL & Douglas HC (1948) Studies on the anaerobic micrococci. V. Taxonomic considerations. J. Bacteriol. 56: 25–34Google Scholar
  44. Fratini A, Powell BC & Rogers GE (1993) Sequence, expression, and evolutionary conservation of a gene encoding a glycine/tyrosine-rich keratin-associated protein of hair. J. Biol. Chem. 268: 4511–4518Google Scholar
  45. Freudenberg W & Andreesen JR (1989) Purification and partial characterization of the glycine decarboxylase multienzyme complex fromEubacterium acidaminophilum. J. Bacteriol. 171: 2209–2215Google Scholar
  46. Freudenberg W, Dietrichs D, Lebertz H & Andreesen JR (1989a) Isolation of an atypically small lipoamide dehydrogenase involved in the glycine decarboxylase complex fromEubacterium acidaminophilum. J. Bacteriol. 171: 1346–1354Google Scholar
  47. Freudenberg W, Mayer F & Andreesen JR (1989b) Immunocytochemical localization of proteins P1, P2, P3 of glycine decarboxylase, and of the selenoprotein PA of glycine reductase, all involved in anaerobic glycine metabolism ofEubacterium acidaminophilum. Arch. Microbiol. 152: 182–188Google Scholar
  48. Fryer TF & Mead GC (1979) Development of a selective medium for the isolation ofClostridium sporogenes and related organisms. J. Appl. Bacteriol. 47: 425–431Google Scholar
  49. Garcia GE & Stadtman TC (1991) Selenoprotein A component of the glycine reductase complex fromClostridium purinolyticum: nucleotide sequence of the gene shows that selenocysteine is encoded by UGA. J. Bacteriol. 173: 2093–2098Google Scholar
  50. Garcia GE & Stadtman TC (1992)Clostridium sticklandii glycine reductase selenoprotein A gene: cloning, sequencing and expression in Escherichia coli. J. Bacteriol. 174: 7080–7089Google Scholar
  51. Gariboldi RT & Drake HL (1984) Glycine synthase of the purinolytic bacterium,Clostridium acidiurici. Purification of the glycine-CO2 exchange system. J. Biol. Chem. 259: 6085–6089Google Scholar
  52. Gauglitz U (1988) Anaerober mikrobieller Abbau von Kreatin, Kreatinin und N-Methylhydantoin. PhD thesis, University of GöttingenGoogle Scholar
  53. Giesel H & Simon H (1983) On the occurrence of enoate and 2-oxo-carboxylate reductase in clostridia and some observations on the amino acid fermentation byPeptostreptococcus anaerobius. Arch. Microbiol. 135: 51–57Google Scholar
  54. Giffhorn S (1980) Verwertung von Methanol, Ethanol und Lactat durchClostridium formicoaceticum. Diploma thesis, University of GöttingenGoogle Scholar
  55. Gleason FK & Holmgren A (1988) Thioredoxin and related proteins in procaryotes. FEMS Microbiol. Rev 54: 271–297Google Scholar
  56. Golovchenko NP, Belokopytov BF & Akimenko VK (1983) Threonine catabolism in the bacteriumClostridium sticklandii. Biochemistry (USSR) 47: 969–974Google Scholar
  57. Gottwald M, Andreesen JR, LeGall J & Ljungdahl LG (1975) Presence of cytochrome and menaquinone inClostridium formicoaceticum andClostridium thermoaceticum. J. Bacteriol. 122: 325–328Google Scholar
  58. Granderath K (1993) Charakterisierung der Formiat-Dehydrogenase und Aldehyd-Dehydrogenase als wolframhaltige Proteine vonEubacterium acidaminophilum. PhD thesis, University of GöttingenGoogle Scholar
  59. Hammes W, Schleifer KH & Kandler O (1973) Mode of action of glycine on the biosynthesis of peptidoglycan. J. Bacteriol. 116: 1029–1053Google Scholar
  60. Heaton MP, Johnston RB & Thompson TL (1987) Controlled cell lysis and protoplast formation by enhancement of inhibitors of alanine racemase by glycine. Biochem. Biophys Res. Commun. 149: 576–579Google Scholar
  61. Heider J & Böck A (1993) Selenium metabolism in microorganisms. Adv. Microbial. Physiol. 35: 71–133Google Scholar
  62. Heider J, Baron C & Böck A (1992) Coding from a distance: dissection of the mRNA determinants required for the incorporation of selenocysteine into proteins. EMBO J. 11: 3759–3766Google Scholar
  63. Heijthuijsen JHFG & Hansen TA (1989a) Anaerobic degradation of betaine by marineDesulfobacterium strains. Arch. Microbiol. 152: 393–396Google Scholar
  64. Heijthiujsen JHFG & Hansen TA (1989b) Betaine fermentation and oxidation by marineDesulfuromonas strains. Appl. Environ. Microbiol. 55: 965–969Google Scholar
  65. van den Hende C, Oyaert W & Boukert TH (1963) Metabolism of glycine, alanine, valine, leucine and isoleucine by rumen bacteria. Res. Vet. Sci. 4: 382–389Google Scholar
  66. Hermann M, Knerr HJ, Mai N, Groß A & Kaltwasser H (1992) Creatinine and N-methylhydantoin degradation in two newly isolatedClostridium species. Arch. Microbiol. 157: 395–401Google Scholar
  67. Hormann K & Andreesen JR (1989) Reductive cleavage of sarcosine and betaine byEubacterium acidaminophilum via enzyme systems different from glycine reductase. Arch. Microbiol. 153: 50–59Google Scholar
  68. Kamlage B & Blaut M (1993) Isolation of a cytochrome-deficient mutant strain ofSporomusa sphaeroides not capable of oxidizing methyl groups. J. Bacteriol. 175: 3043–3050Google Scholar
  69. Kamlage B, Boelter A & Blaut M (1993) Spectroscopic and potentiometric characterization of cytochromes in twoSporomusa species and their expression during growth on selected substrates. Arch. Microbiol. 159: 189–196Google Scholar
  70. Karlsson JL & Barker HA (1949) Tracer experiments on the mechanism of uric acid decomposition and acetic acid synthesis byClostridium acidi-urici. J. Biol. Chem. 178: 891–902Google Scholar
  71. Kearny JJ & Sagers RD (1972) Formate dehydrogenase fromClostridium acidi-urici. J. Bacteriol. 109: 152–161Google Scholar
  72. Keller B, Sauer N & Lamb CJ (1988) Glycine-rich cell wall proteins in bean: gene structure and association of the protein with the vascular system. EMBO J. 7: 3625–3633Google Scholar
  73. Klein SM & Sagers RD (1966a) Glycine metabolism. I. Properties of the system catalyzing the exchange of bicarbonate with the carboxyl group of glycine inPeptococcus glycinophilus. J. Biol. Chem. 241: 197–207Google Scholar
  74. Klein SM & Sagers RD (1966b) Glycine metabolism. II. Kinetic and optical studies on the glycine decarboxylase system fromPeptococcus glycinophilus. J. Biol. Chem. 241: 206–209Google Scholar
  75. Klein SM & Sagers RD (1967a) Glycine metabolism. III. A flavin-linked dehydrogenase associated with the glycine cleavage system inPeptococcus glycinophilus. J. Biol. Chem. 242: 297–300Google Scholar
  76. Klein SM & Sagers RD (1967b) Glycine metabolism. IV. Effect of borohydride reduction on the pyridoxal phosphate-containing glycine decarboxylase fromPeptococcus glycinophilus. J. Biol. Chem. 242: 301–305Google Scholar
  77. Koo SP & Booth IR (1994) Quantitative analysis of growth stimulation by glycine betaine inSalmonella typhimurium. Microbiology (London) 140: 617–621Google Scholar
  78. Lamark T, Styrvold OB & Strom AR (1992) Efflux of choline and glycine betaine from osmoregulating cells ofEscherichia coli. FEMS Microbiol. Lett 96: 149–154Google Scholar
  79. Lang H, Polster M & Brandsch R (1991) Rat liver dimethylglycine dehydrogenase. Flavinylation of the enzyme in hepatocytes in primary culture and characterization of a cDNA clone. Eur. J. Biochem. 198: 793–799Google Scholar
  80. Lebertz H (1984) Selenabhängiger Glycin-Stoffwechsel in anaeroben Bakterien und vergleichende Untersuchungen zur Glycin-Reduktase und zur Glycin-Decarboxylase. PhD thesis, University of GöttingenGoogle Scholar
  81. Lebertz H & Andreesen JR (1988) Glycine fermentation byClostridium histolyticum. Arch. Microbiol. 150: 11–14Google Scholar
  82. Lee MJ & Zinder SH (1988) Isolation and characterization of a thermophilic bacterium which oxidzes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO2. Appl. Environ. Microbiol. 54: 124–129Google Scholar
  83. Lovitt RW, Morris JG & Kell DB (1987) The growth and nutrition ofClostridium sporogenes NCIB 8053 in defined media. J. Appl. Bacteriol. 62: 71–80Google Scholar
  84. Lübbers M & Andreesen JR (1993) Components of glycine reductase fromEubacterium acidaminophilum. Cloning, sequencing and identification of the genes for thioredoxin reductase, thioredoxin and selenoprotein PA. Eur. J. Biochem. 217: 791–798Google Scholar
  85. Marmelak R & Quastel JH (1953) Amino acid interactions in strict anaerobes (Cl. sporogenes). Biochim. Biophys. Acta 12: 103–120Google Scholar
  86. Marthi B & Lighthart B (1990) Effects of betaine on enumeration of airborne bacteria. Appl. Environ. Microbiol. 56: 1286–1289Google Scholar
  87. Mead GC (1971) The amino acid-fermenting Clostridia. J. Gen. Microbiol. 67: 47–56Google Scholar
  88. Meyer M (1993) Beziehungen des Thioredoxin-Systems zur Glycin-, Sarkosin- und Betain-Reduktase in anaeroben, Aminosäure verwertenden Bakterien. PhD thesis, University of GöttingenGoogle Scholar
  89. Meyer M, Dietrichs D, Schmidt B & Andreesen JR (1991) Thioredoxin elicits a new dihydrolipoamide dehydrogenase activity by interaction with the electron-transferring flavoprotein inClostridium litorale andEubacterium acidaminophilum. J. Bacteriol. 173: 1509–1513Google Scholar
  90. Molenaar D, Hagting A, Alkema H, Driessen AJM, & Konings WN (1993) Characteristics and osmoregulatory roles of uptake systems for proline and glycine betaine inLactococcus lactis. J. Bacteriol. 175: 5438–5444Google Scholar
  91. Möller B, Hippe H & Gottschalk G (1986) Degradation of various amine compounds by mesophilic clostridia. Arch. Microbiol. 145: 85–90Google Scholar
  92. Möller B, Oßmer R, Howard BH, Gottschalk G & Hippe H (1984)Sporomusa, a new genus of gram-negative anaerobic bacteria includingSporomusa sphaeroides spec. nov. andSporomusa ovata spec. nov. Arch. Microbiol. 139: 388–396Google Scholar
  93. Müller E, Fahlbusch K, Walther R & Gottschalk G (1981) Formation of N, N-dimethylglycine, acetic acid, and butyric acid from betaine byEubacterium limosum. Appl. Environ. Microbiol. 42: 439–445Google Scholar
  94. Murao S, Hinode Y, Matsumura E, Numata A, Kawai K, Ohishi H, Jin H, Oyama H & Shin T (1992) A novel laccase inhibitor, N-hydroxyglycine, produced byPenicillium citrinum YH-31. Biosci. Biotech. Biochem. 56: 987–988Google Scholar
  95. Nagase M & Matsuo T (1982) Interactions between amino-acid-degrading bacteria and methanogenic bacteria in anaerobic digestion. Biotechnol. Bioeng. 24: 2227–2239Google Scholar
  96. Naumann E, Hippe H & Gottschalk G (1983) Betaine: new oxidant in the Stickland reaction and methanogenesis from betaine and L-alanine by aClostridium sporogenes — Methanosarcinabarkeri coculture. Appl. Environ. Microbiol. 45: 474–483Google Scholar
  97. Newmann EB, D'Ari & Lin RT (1992) The leuchine-Lrp regulon inEscherichia coli: a global response in search of a raison d'etre. Cell 68: 617–619Google Scholar
  98. Nisman B (1954) The Stickland reaction. Bacteriol. Rev. 18: 16–42Google Scholar
  99. Okamura-Ikeda K, Ohmura Y, Fujiwara K & Motakawa Y (1993) Cloning and nucleotide sequence of the gcv operon encoding theEscherichia coli glycine-cleavage system. Eur. J. Biochem. 216: 539–548Google Scholar
  100. Oppermann FB & Steinbüchel (1994) Identification and molecular characterization of the aco genes encoding thePelobacter carbinolicus acetoin dehydrogenase enzyme system. J. Bacteriol. 176: 469–485Google Scholar
  101. Oren A (1990) Formation and breakdown of glycine betaine and trimethylamine in hypersaaline environments. Antonie van Leeuwenhoek 58: 291–298Google Scholar
  102. Phelps TJ & Zeikus JG (1984) Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake. Appl. Environ. Microbiol. 48: 1088–1095Google Scholar
  103. Pinsent J (1954) The need of selenite and molybdate in the formation of formic dehydrogenase by members of the coli-aerogenase group of bacteria. Biochem. J. 57: 10–16Google Scholar
  104. van Poelje PD & Snell EE (1990) Pyruvoyl-dependent enzymes. Annu. Rev. Biochem. 59: 29–59Google Scholar
  105. Porter DH, Cook RJ & Wagner C (1985) Enzymatic properties of dimethylglycine dehydrogenase and sarcosine dehydrogenase from rat liver. Arch. Biochem. Biophys 243: 396–407Google Scholar
  106. Rhodes D & Hanson AD (1993) Quarternary ammonium and tertiary sulfonium compounds in higher plants. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 44: 357–384Google Scholar
  107. Richarme G (1989) Purification of a new dihydrolipoamide dehydrogenase fromEscherichia coli. J. Bacteriol. 171: 6580–6585Google Scholar
  108. Rieth M (1987) Untersuchungen zur selenabhängigen Glycinreduktase ausEubacterium acidaminophilum. PhD thesis, University of GöttingenGoogle Scholar
  109. Robinson JR, Klein SM & Sagers RD (1973) Glycine metabolism. Lipoic acid as the prosthetic group in the electron transfer protein P2 fromPeptococcus glycinophilus. Biol. Chem. 248: 5319–5323Google Scholar
  110. Schiefer-Ullrich H & Andreesen JR (1985)Peptostreptococcus barnesae sp. nov., a Gram-positive, anaerobic, obligately purine utilizing coccus from chicken feces. Arch. Microbiol. 143: 26–31Google Scholar
  111. Schiefer-Ullrich H, Wagner R, Dürre P & Andreesen JR (1984) Comparative studies on physiology and taxonomy of obligately purinolytic clostridia. Arch. Microbiol. 138: 345–353Google Scholar
  112. Schirch V & Strong WB (1989) Interaction of folylpolyglutamates with enzymes in one-carbon metabolism. Arch. Biochem. Biophys. 269: 371–380Google Scholar
  113. Schleicher A (1990) Anaerober Abbau von Kreatinin und Kreatin unter Beteiligung von Reduktase-Reaktionen. Diploma thesis, University of GöttingenGoogle Scholar
  114. Schräder T & Andreesen JR (1992) Purification and characterization of protein Pc, a component of glycine reductase fromEubacterium acidaminophilum. Eur. J. Biochem. 206: 79–85Google Scholar
  115. Schwartz AC, Quecke W & Brenschede (1979) Inhibition by glycine of the catabolic reduction of proline inClostridium sticklandii: evidence on the regulation of amino acid reduction. Z. Allg. Microbiol. 19: 211–220Google Scholar
  116. Seto B (1980) The Stickland reaction. In: Knowles CJ (Ed) Diversity in bacterial respiratory systems, Vol II (pp 49–64). CRC Press, Boca RatonGoogle Scholar
  117. Sliwkowski MX & Stadtman TC (1987) Purification and immunological studies of selenoprotein A of the clostridial glycine reductase complex. J. Biol. Chem. 262: 4899–4904Google Scholar
  118. Sliwkowski MX & Stadtman TC (1988a) Selenoprotein A of the clostridial glycine reductase complex: purification and amino acid sequence of the selenocysteine-containing peptide. Proc. Natl. Acad. Sci. (USA) 85: 368–371Google Scholar
  119. Sliwkowski MX & Stadtman TC (1988b) Selenium-dependent glycine reductase: differences in physicochemical properties and biological activities of selenoprotein A components isolated fromClostridium sticklandii andClostridium purinolyticum. Biofactor. 1: 293–296Google Scholar
  120. Stadtman TC (1962) Studies on the enzymic reduction of amino acids. V. coupling of a DPNH-generating system to glycine reduction. Arch. Biochem. Biophys. 99: 36–44Google Scholar
  121. Stadtman TC (1965) Electron transport proteins ofClostridium sticklandii. In: San Pietro A (Ed) Non-heme-iron proteins, role in energy conservation (pp 439–445) Antioch Press, Yellow SpringsGoogle Scholar
  122. Stadtman TC (1966) Glycine reduction to acetate and ammonia: identification of ferredoxin and another low molecular weight acidic protein as components of the reductase system. Arch. Biochem. Biophys. 113: 9–19Google Scholar
  123. Stadtman TC (1978) Selenium-dependent clostridial glycine reductase. Meth. Enzymol. 53: 373–382Google Scholar
  124. Stadtman TC (1989) Clostridial glycine reductase Protein C, the acetyl group acceptor catalyzes the arsenate-dependent decomposition of acetyl phosphate. Proc. Natl. Acad. Sci. (USA) 86: 7853–7856Google Scholar
  125. Stadtman TC & Davis JN (1991) Glycine reductase protein C. Properties and characterization of its role in the reductive cleavage of Se-carboxymethylselenoprotein A. J. Biol. Chem. 266: 22147–22153Google Scholar
  126. Stadtman TC & Elliott P (1956) A new ATP-forming reaction: the reductive deamination of glycine. J. Am. Chem. Soc. 78: 2020–2021Google Scholar
  127. Stadtman TC, Elliott P & Tiemann L (1958) Studies on the enzymic reduction of amino acids. III. Phosphate esterification coupled with glycine reduction. J. Biol. Chem. 231: 961–973Google Scholar
  128. Stadtman TC & White FH (1954) Tracer studies on ornithine, lysine, and formate metabolism in an amino acid fermenting Clostridium. J. Bacteriol. 67: 651–657Google Scholar
  129. Stams AJM & Hansen TA (1984) Fermentation of glutamate and other compounds byAcidaminobacter hydrogenoformans gen. nov. sp. nov., an obligate anaerobe isolated from black mud. Studies with pure cultures and mixed cultures with sulfate-reducing and methanogenic bacteria. Arch. Microbiol. 137: 329–337Google Scholar
  130. Stams AJM, Hansen TA & Skyring GW (1985) Utilization of amino acids as energy substrates by two marineDesulfovibrio strains. FEMS Microbiol. Ecol. 31: 11–15Google Scholar
  131. Steiert JG, Rolfes RJ, Zalkin H & Stauffer GV (1990a) Regulation of theEscherichia coli gly A gene by the pur R gene product. J. Bacteriol. 172: 3799–3803Google Scholar
  132. Steiert PS, Stauffer LT & Stauffer GV (1990b) The lpd gene product functions as the L protein in theEscherichia coli glycine cleavage enzyme system. J. Bacteriol. 172: 6142–6144Google Scholar
  133. Stickland LH (1934) The chemical reaction by whichCl. sporogenes obtains its energy. Biochem. J. 28: 1746–1759Google Scholar
  134. Stickland LH (1935a) Studies in the metabolism of the strict anaerobes (GenusClostridium) II. The reduction of proline byCl. sporogenes. Biochem. J. 29: 288–290Google Scholar
  135. Stickland LH (1935b) Studies in the metabolism of the strict anaerobes (GenusClostridium) III. The oxidation of alanine byCl. sporogenes. IV. The reduction of glycine byCl. sporogenes. Biochem. J. 29: 889–898Google Scholar
  136. Szulmajster J (1958) Bacterial fermentation of creatinine. I. Isolation of N-methyl-hydantoin. J. Bacteriol. 75: 633–639Google Scholar
  137. Szulmajster J (1960) Le carbamyl-phosphate, intermediaire dans la degradation de la creatinine per des extraits enzymatique d'Eubacterium sarcosinogenum. Biochim. Biophys. Acta 44: 173–175Google Scholar
  138. Szulmajster J & Gardiner RC (1960) Enzymatic formation of polyphosphate in an anaerobic bacterium. Biochim. Biophys. Acta 39: 165–167Google Scholar
  139. Szulmajster J & Kaiser P (1960) Etude d'une nouvelle espece anaerobie:Eubacterium sarcosinogenum nov. sp. Ann. Inst. Pasteur. 98: 774–777Google Scholar
  140. Tanaka H & Stadtman TC (1979) Selenium-dependent clostridial glycine reductase. Purification and characterization of the two membrane-associated protein components. J. Biol. Chem. 254: 447–452Google Scholar
  141. Tanaka K & Pfennig N (1988) Fermentation of 2-methoxyethanol byAcetobacterium malicum sp. nov. and Pelobacter venetianus. Arch. Microbiol. 149: 181–187Google Scholar
  142. Thauer, RK, Jungermann K & Decker K (1977) Energy conservation in chemotro-phic anaerobic bacteria. Bacteriol. Rev. 41: 100–180Google Scholar
  143. Turner DC & Stadtman TC (1973) Purification of protein components of the clostridial glycine reductase system and characterization of protein A as a selenoprotein. Arch. Biochem. Biophys. 154: 366–381Google Scholar
  144. Tziaka C (1987) Untersuchungen zur Charakterisierung von Stämmen der GattungenPeptococcus undPeptostreptococcus. PhD thesis, University of GöttingenGoogle Scholar
  145. Uhde A (1990) Wachstumsphysiologische Untersuchungen zum Abbau von Aminosäuren und mögliche Funktion eines elektronentransferierenden Flavoproteins beiClostridium sticklandii. Diploma thesis, University of GöttingenGoogle Scholar
  146. Vanden Boom TJ, Reed KE & Cronan JE (1991) Lipoic acid metabolism inEscherichia coli: isolation of null mutants defective in lipoic acid biosynthesis, molecular cloning and characterization of the E. coli lip locus, and identification of the lipolyated protein of the glycine cleavage system. J. Bacteriol. 173: 6411–6420Google Scholar
  147. Venugopalan V (1980) Influence of growth conditions on glycine reductase ofClostridium sporogenes. J. Bacteriol. 141: 386–388Google Scholar
  148. Vogels GD & van der Drift C (1976) Degradation of purines and pyrimidines by microorganisms. Bacteriol. Rev. 40: 403–468Google Scholar
  149. Waber JL & Wood HG (1979) Mechanism of acetate synthesis from CO2 byClostridium acidi-urici. J. Bacteriol. 140: 468–478Google Scholar
  150. Wagner M (1994) Isolierung und Charakterisierung der Threonin-Dehydrogenase ausClostridium sticklandii. Diploma thesis, University of GöttingenGoogle Scholar
  151. Wagner R & Andreesen JR (1987) Accumulation and incorporation of185W-tungsten into proteins ofClostridium acidiurici andClostridium cylindrosporum. Arch. Microbiol. 147: 295–299Google Scholar
  152. Wagner R, Cammack R & Andreesen JR (1984) Purification and characterization of xanthine dehydrogenase fromClostridium acidiurici grown in the presence of selenium. Biochim. Biophys. Acta 791: 63–74Google Scholar
  153. Wang Q, Wu J, Friedberg D, Plakto J & Calvo JM (1994) Regulation of theEscherichia coli lrp gene. J. Bacteriol. 176: 1831–1839Google Scholar
  154. Williams CH (1992) Lipoamide dehydrogenase, glutathione reductase, thioredoxin reductase, and mercuric ion reductase — a family of flavoenzyme transhydroge-nases. In: Müller F (Ed) Chemistry and biochemistry of flavoenzymes, Vol 3 (pp 121–211). CRC Press, Boca RatonGoogle Scholar
  155. Wilson RL & Stauffer GV (1994) DNA sequence and characterization of GcvA, a LysR family regulatory protein for theEscherichia coli glycine cleavage enzyme system. J. Bacteriol. 176: 2862–2868Google Scholar
  156. Wilson RL, Stauffer LT & Stauffer GV (1993a) Roles of the GevA and PurR proteins in negative regulation of theEscherichia coli glycine cleavage enzyme system. J. Bacteriol. 175: 5129–5134Google Scholar
  157. Wilson RL, Steiert PS & Stauffer GV (1993b) Positive regulation of theEscherichia coli glycine cleavage enzyme system. J. Bacteriol. 175: 902–904Google Scholar
  158. Winter J, Schindler F & Wildenauer FX (1987) Fermentation of alanine and glycine by pure and syntrophic cultures ofClostridium sporogenes. FEMS Microbiol. Ecol. 45: 153–161Google Scholar
  159. Woods DD (1936) Studies in the metabolism of the strict anaerobes (GenusClostridium). V. Further experiments on the coupled reactions between pairs of amino-acids induced byCl. sporogenes. Biochem. J. 30: 1934–1946Google Scholar
  160. Wood HG & Ljungdahl LG (1991) Autotrophic character of the acetogenic bacteria. In: Shively JM, Barton LL (Eds) Variations in autotrophic life (pp 201–250). Academic Press, LondonGoogle Scholar
  161. Wright DE & Hungate RE (1967a) Amino acid concentrations in rumen fluid. Appl. Microbiol. 15: 148–151Google Scholar
  162. Wright DE & Hungate RE (1967b) Metabolism of glycine by rumen microorganisms. Appl. Microbiol. 15: 152–157Google Scholar
  163. Zhilina TN & Zavarzin GA (1990) Extremely halophilic, methylotrophic, anaerobic bacteria. FEMS Microbiol. Rev 87: 315–321Google Scholar
  164. Zindel U, Freudenberg W, Rieth M, Andreesen JR, Schnell J & Widdel F (1988)Eubacterium acidaminophilum sp. nov., a versatile amino acid-degrading anaerobe producing or utilizing H2 or formate. Description and enzymatic studies. Arch. Microbiol. 150: 254–266Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Jan R. Andreesen
    • 1
  1. 1.Institute of MicrobiologyUniversity of HalleHalleGermany

Personalised recommendations