Antonie van Leeuwenhoek

, Volume 66, Issue 1–3, pp 187–208 | Cite as

Metabolism of methanogens

  • Michael Blaut
Research Articles

Abstract

Methanogenic archaea convert a few simple compounds such as H2 + CO2, formate, methanol, methylamines, and acetate to methane. Methanogenesis from all these substrates requires a number of unique coenzymes, some of which are exclusively found in methanogens. H2-dependent CO2 reduction proceeds via carrier-bound C1 intermediates which become stepwise reduced to methane. Methane formation from methanol and methylamines involves the disproportionation of the methyl groups. Part of the methyl groups are oxidized to CO2, and the reducing equivalents thereby gained are subsequently used to reduce other methyl groups to methane. This process involves the same C1 intermediates that are formed during methanogenesis from CO2. Conversion of acetate to methane and carbon dioxide is preceeded by its activation to acetyl-CoA. Cleavage of the latter compound yields a coenzyme-bound methyl moiety and an enzyme-bound carbonyl group. The reducing equivalents gained by oxidation of the carbonyl group to carbon dioxide are subsequently used to reduce the methyl moiety to methane. All these processes lead to the generation of transmembrane ion gradients which fuel ATP synthesis via one or two types of ATP synthases. The synthesis of cellular building blocks starts with the central anabolic intermediate acetyl-CoA which, in autotrophic methanogens, is synthesized from two molecules of CO2 in a linear pathway.

Key words

carbon dioxide carbon metabolism CO dehydrogenase heterodisulfide reductase hydrogenase methanogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbanat DR & Ferry JG (1990) Synthesis of acetyl coenzyme A by carbon monoxide dehydrogenase complex from acetate-grownMethanosarcina thermophila. J. Bacteriol. 172: 7145–7150Google Scholar
  2. —— (1991) Resolution of component proteins in an enzyme complex fromMethanosarcina thermophila catalyzing the synthesis or cleavage of acetyl-CoA. Proc. Natl. Acad. Sci. USA 88: 3272–3276Google Scholar
  3. Aceti DJ & Ferry JG (1988) Purification and characterization of acetate kinase from acetate-grownMethanosarcina thermophila. J. Biol. Chem. 263: 15444–15448Google Scholar
  4. Aldrich HC, Beimborn DB, Bokranz M & Schönheit P (1987) Immunocytochemical localization of methyl-coenzyme M reductase inMethanobacterium thermoautotrophicum. Arch. Microbiol. 147: 190–194Google Scholar
  5. Alex LA, Reeve JN, Orme-Johnson WH & Walsh CT (1990) Cloning, sequence determination, and expression of the genes encoding the subunits of the nickel-containing 8-hydroxy-5-deazaflavin reducing hydrogenase fromMethanobacterium thermoautotrophicum ΔH. Biochemistry 29: 7237–7244Google Scholar
  6. Ankel-Fuchs D & Thauer TK (1986) Methane formation from methyl-coenzyme M in a system containing methylcoenzyme M reductase, component B and reduced cobalamin. Eur. J. Biochem. 156: 171–177Google Scholar
  7. Balch WE, Fox GE, Magrum LJ, Woese CR & Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43: 260–296Google Scholar
  8. Barber MJ, Siegel LM, Schauer NL, May HD & Ferry JG (1983) Formate dehydrogenase fromMethanobacterium formicicum. J. Biol. Chem. 258: 10839–10845Google Scholar
  9. Baron SF & Ferry JG (1989) Purification and properties of the membrane-associated coenzyme F420-reducing hydrogenase fromMethanobacterium formicicum. J. Bacteriol. 171: 3846–3853Google Scholar
  10. Becher B, Müller V & Gottschalk G (1992) N5-methyl-tetrahydromethanopterin: coenzyme M methyltransferase ofMethanosarcina strain Göl is a Na+-translocating membrane protein. J. Bacteriol. 174: 7656–7660Google Scholar
  11. Beelen P van, Labro JFA, Keltjens JT, Geerts WJ & Vogels GD (1984a) Derivatives of methanopterin, a coenzyme involved in methanogenesis. Eur. J. Biochem. 139: 359–365Google Scholar
  12. Beelen P van, Stassen PM, Bosch JWG, Vogels GD & Guijt W (1984b) Elucidation of the structure of methanopterin, a coenzyme fromMethanobacterium thermoautotrophicum, using two-dimensional nuclear-magnetic-resonance techniques. Eur. J. Biochem. 138: 563–571Google Scholar
  13. Berkessel A (1991) Methyl-coenzyme M reductase: model studies on pentadentate nickel complexes and a hypothetical mechanism. Bioorg. Chem. 19: 101–115Google Scholar
  14. Blaut M & Gottschalk G (1984) Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen inMethanosarcina barkeri. Eur. J. Biochem. 141: 217–222Google Scholar
  15. Blaut M, Müller V & Gottschalk G (1992) Energetics of methanogenesis studied in vesicular systems. J. Bioenerg. Biomembranes 24: 529–546Google Scholar
  16. Bobik TA, Olson KD, Noll KM & Wolfe RS (1987) Evidence that the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreoninephosphate is a product of the methylreductase reaction inMethanobacterium. Biochem. Biophys. Res. Commun. 149: 455–460Google Scholar
  17. Bonacker LG, Baudner S, Mörschel E, Böcher R & Thauer RK (1993) Properties of the two isoenzymes of methyl-coenzyme M reductase inMethanobacterium thermoautotrophicum. Eur. J. Biochem. 217: 587–595Google Scholar
  18. Bonacker LG, Baudner S & Thauer RK (1992) Differential expression of the 2 methyl-coenzyme M reductases inMethanobacterium thermoautotrophicum as determined immunochemically via isoenzyme-specific antisera. Eur. J. Biochem. 206: 87–92Google Scholar
  19. Börner G, Karrasch M & Thauer RK (1991) Molybdopterin adenine dinucleotide and molybdopterin hypoxanthine dinucleotide in formylmethanofuran dehydrogenase fromMethanobacterium thermoautotrophicum (Marburg). FEBS Lett. 290: 31–34Google Scholar
  20. Bott M & Thauer RK (1987) Proton-motive-force-driven formation of CO from CO2 and H2 in methanogenic bacteria. Eur. J. Biochem. 168: 407–412Google Scholar
  21. Breitung J, Börner G, Scholz S, Linder D, Stetter KO & Thauer RK (1992) Salt dependence, kinetic properties and catalytic mechanism ofN 5-formylmethanofuran — tetrahydromethanopterin formyltransferase from the extreme thermophileMethanopyrus kandleri. Eur. J. Biochem. 210: 971–981Google Scholar
  22. Breitung J, Schmitz RA, Stetter KO & Thauer RK (1991)N 5,N 10-methnyltetrahydromethanopterin cyclohydrolase from the extreme thermophileMethanopyrus kandleri — increase of catalytic efficiency (kcat/KM) and thermostability in the presence of salts. Arch. Microbiol. 156: 517–524Google Scholar
  23. Breitung J & Thauer RK (1990) Formylmethanofuran: tetrahydromethanopterin formyltransferase fromMethanosarcina barkeri — identification of N5-formyltetrahydromethanopterin as the product. FEBS Lett. 275: 226–230Google Scholar
  24. Conrad R & Thauer RK (1983) Carbon monoxide production byMethanobacterium thermoautotrophicum. FEMS Microbiol. Lett. 20: 229–232Google Scholar
  25. Coremans JMCC, Zwaan JW van der & Albracht SPJ (1989) Redox behaviour of nickel in hydrogenase fromMethanobacterium thermoautotrophicum (strain Marburg). Correlation between the nickel valence state and enzyme activity. Biochim. Biophys. Acta 997: 256–267Google Scholar
  26. Daniels L & Zeikus JG (1978) One carbon metabolism in methanogenic bacteria: analysis of short term fixation products of14CO2 and14CH3OH incorporated into whole cells. J. Bacteriol. 136: 75–84Google Scholar
  27. DeMoll E, Grahame DA, Harnly JM, Tsai L & Stadtman TC (1987) Purification and properties of carbon monoxide dehydrogenase fromMethanococcus vannielii. J. Bacteriol. 169: 3916–3920Google Scholar
  28. Denda K, Konishi J, Oshima T, Date T & Yoshida M (1988a) The membrane-associated ATPase fromSulfolobus acidocaldarius is distantly related to F1-ATPase as assessed from the primary structure of its subunit. J. Biol. Chem. 263: 6012–6015Google Scholar
  29. —— (1988b) Molecular cloning of the beta-subunit of a possible non-F1-F0-type ATP synthase from the acidothermophilic archaebacteriumSulfolobus acidocaldarius. J. Biol. Chem. 263: 17251–17257Google Scholar
  30. Deppenmeier U, Blaut M & Gottschalk G (1991) H2: heterodisulfide oxidoreductase, a second energy conserving system in the methanogenic strain Göl. Arch. Microbiol. 155: 272–277Google Scholar
  31. Deppenmeier U, Blaut M, Mahlmann A & Gottschalk G (1990) Reduced coenzyme F420 heterodisulfide oxidoreductase, a proton-translocating redox system in methanogenic bacteria. Proc. Natl. Acad. Sci. USA 87: 9449–9453Google Scholar
  32. Deppenmeier U, Blaut M, Schmidt B & Gottschalk G (1992) Purification and properties of a F420-nonreactive, membrane-bound hydrogenase fromMethanosarcina strain Göl. Arch. Microbiol. 157: 505–511Google Scholar
  33. DiMarco AA, Donnelly MI & Wolfe RS (1986) Purification of the 5,10-methenyltetrahydromethanopterin cyclohydrolase fromMethanobacterium thermoautotrophicum. J. Bacteriol. 168: 1372–1377Google Scholar
  34. DiMarco AA, Sment KA, Konisky J & Wolfe RS (1990) The formylmethanofuran tetrahydromethanopterin formyltransferase fromMethanobacterium thermoautotrophicum ΔH-nucleotide sequence and functional expression of the cloned gene. J. Biol. Chem. 265: 472–476Google Scholar
  35. Doddema HJ, Hutten TJ, Drift C van der & Vogels GD (1978) ATP hydrolysis and synthesis by the membrane-bound ATP synthetase complex ofMethanobacterium thermoautotrophicum. J. Bacteriol. 136: 19–23Google Scholar
  36. Donnelly MI, Escalante-Semerena JC, Rinehart KL & Wolfe RS (1985) Methenyl-tetrahydromethanopterin cyclohydrolase in cell extracts ofMethanobacterium. Arch. Biochem. Biophys. 242: 430–439Google Scholar
  37. Donnelly MI & Wolfe RS (1986) The role of formylmethanofuran: tetrahydromethanopterin formyltransferase in methanogenesis from CO2. J. Biol. Chem. 261: 16653–16659Google Scholar
  38. Drake HL, Hu S & Wood HG (1981) Purification of five components ofClostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahy drofolate. J. Biol. Chem. 256: 11137–11144Google Scholar
  39. Dybas M & Konisky J (1992) Energy transduction in the methanogenMethanococcus voltae is based on a sodium current. J. Bacteriol. 174: 5575–5583Google Scholar
  40. Eggen RIL, Geerling ACM, Boshoven ABP & Vos WM de (1991a) Cloning, sequence analysis, and functional expression of the acetyl coenzyme A synthetase gene fromMethanothrix soehngenii inEscherichia coli. J. Bacteriol. 173: 6383–6389Google Scholar
  41. Eggen RIL, Geerling ACM, Jetten MSM & Vos WM de (1991b). Cloning, expression, and sequence analysis of the genes for the carbon monoxide dehydrogenase ofMethanothrix soehngenii. J. Biol. Chem. 266: 6883–6887Google Scholar
  42. Eirich LD, Vogels GD & Wolfe RS (1978) Proposed structure for coenzyme F420 fromMethanobacterium. Biochemistry 17: 4583–4593Google Scholar
  43. Ekiel I, Jarrell KF & Sprott GD (1985a) Amino acid biosynthesis and sodium-dependent transport inMethanococcus voltae, as revealed by13C NMR. Eur. J. Biochem. 149: 437–444Google Scholar
  44. Ekiel I, Smith ICP & Sprott GD (1983) Biosynthetic pathways inMethanospirillum hungatei as determined by13C nuclear magnetic resonance. J. Bacteriol. 156: 316–326Google Scholar
  45. Ekiel I, Sprott GD & Patel GB (1985b) Acetate and CO2 assimilation inMethanothrix concilii. J. Bacteriol. 162: 905–908Google Scholar
  46. Ellefson WL & Wolfe RS (1981) Component C of the methyl coenzyme M methylreductase system ofMethanobacterium. J. Biol. Chem. 256: 4259–4262Google Scholar
  47. Ellermann J, Hedderich R, Böcher R & Thauer RK (1988) The final step in methane formation. Investigations with highly purified methyl-CoM reductase (component C) fromMethanobacterium thermoautotrophicum (strain Marburg). Eur. J. Biochem. 172: 669–677Google Scholar
  48. Enßle M, Zirngibl C, Linder D & Thauer RK (1991) Coenzyme F420-dependent N5,N10-methylenetetrahydromethanopterin dehydrogenase in methanol grownMethanosarcinabarkeri. Arch. Microbiol. 155: 483–490Google Scholar
  49. Eyzaguirre J, Jansen K & Fuchs G (1982) Phosphoenolpyruvate synthetase inMethanobacterium thermoautotrophicum. Arch. Microbiol. 132: 67–74Google Scholar
  50. Färber G, Keller W, Kratky B, Jaun B, Pfaltz A, Spinner C, Kobelt A & Eschenmoser A (1991) Coenzyme F430 from methanogenic bacteria: complete assignment of configuration based on X-ray analysis of 12,12-Diepi-F430 pentamethylester and on NMR spectroscopy. Helv. Chim. Acta 74: 697–716Google Scholar
  51. Ferry JG (1992) Methane from acetate. J. Bacteriol. 174: 5489–5495Google Scholar
  52. Fiebig K & Friedrich B (1989) Purification of the F420-reducing hydrogenase fromMethanosarcina barkeri (strain Fusaro). Eur. J. Biochem. 184: 79–88Google Scholar
  53. Fisher R & Thauer RK (1989) Methyltetrahydromethanopterin as an intermediate in methanogenesis from acetate inMethanosarcina barkeri. Arch. Microbiol. 151: 459–465Google Scholar
  54. —— (1990) Ferredoxin-dependent methane formation from acetate in cell extracts ofMethanosarcina barkeri (strain MS). FEBS Lett. 269: 368–372Google Scholar
  55. Fox JA, Livingston DJ, Orme-Johnson WM & Walsh CT (1987) 8-Hydroxy-5-deazaflavin-reducing hydrogenase fromMethanobacterium thermoautotrophicum: a) Purification and characterization. b) kinetic and hydrogen transfer studies. Biochemistry 26: 4219–4227Google Scholar
  56. Fuchs G (1986) CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol. Rev. 39: 181–213Google Scholar
  57. Fuchs G & Stupperich E (1978) Evidence for an incomplete reductive carboxylic acid cycle inMethanobacterium thermoautotrophicum. Arch. Microbiol. 118: 121–125Google Scholar
  58. —— (1980) Acetyl CoA, a central intermediate of autotrophic CO2 fixation inMethanobacterium thermoautotrophicum. Arch. Microbiol. 127: 267–272Google Scholar
  59. Fuchs G, Stupperich E & Thauer RK (1978) Acetate assimilation and synthesis of alanine, apartate, and glutamate inMethanobacterium thermoautotrophicum. Arch. Microbiol. 117: 61–66Google Scholar
  60. Garcia JL (1990) Taxonomy and ecology of methanogens. FEMS Microbiol. Rev. 87: 297–308Google Scholar
  61. Gärtner P, Ecker A, Fischer R, Linder D, Fuchs G & Thauer RK (1993) Purification and properties ofN 5-methyltetrahydromethanopterin: coenzyme M methyltransferase fromMethanobacterium thermoautotrophicum. Eur. J. Biochem. 213: 537–545Google Scholar
  62. Gogarten JP, Kibak H, Dittrich P, Taiz L, Bowman EJ, Bowman BJ, Manolson MF, Poole RJ, Date T, Oshima T, Konishi J, Denda K & Yoshida M (1989a) Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc. Natl. Acad. Sci. USA 86: 6661–6665Google Scholar
  63. Gogarten JP, Rausch T, Bernasconi P, Kibak H & Taiz L (1989b) Molecular evolution of H+-ATPases. I.Methanococcus andSulfolobus are monophyletic with respect to eucaryotes and eubacteria. Z. Naturforsch. 44c: 641–650Google Scholar
  64. Grahame DA & Stadtman TC (1987) Carbon monoxide dehydrogenase fromMethanosarcina barkeri: disaggregation, purification, and physicochemical properties of the enzyme. J. Biol. Chem. 26: 3706–3712Google Scholar
  65. —— (1991) Catalysis of acetyl-CoA cleavage and tetrahydrosarcinapterin methylation by a carbon monoxide dehydrogenase-corrinoid enzyme complex. J. Biol. Chem. 266: 22227–22233Google Scholar
  66. —— (1993) Redox enzymes of methanogens: physicochemical properties of selected, purified oxidoreductases. In: Ferry JG (Ed) Methanogenesis (pp 335–359) Capman & Hall, New YorkGoogle Scholar
  67. Haase P, Deppenmeier U, Blaut M & Gottschalk G (1992) Purification and characterization of F420H2 dehydrogenase fromMethanolobus tindarius. Eur. J. Biochem. 203: 527–531Google Scholar
  68. Halboth S & Klein A (1992)Methanococcus voltae harbors 4 gene clusters potentially encoding 2 <NiFe> and 2 <NiFeSe> hydrogenases, each of the cofactor F420-reducing or F420-non-reducing types. Mol. Gen. Genet. 233: 217–224Google Scholar
  69. Hartzell PL, Donnelly MI & Wolfe RS (1987) Incorporation of coenzyme M into component C of methylcoenzyme M duringin vitro methanogenesis. J. Biol. Chem. 262: 5581–5586Google Scholar
  70. Hedderich R, Berkessel A & Thauer RK (1989) Catalytic properties of the heterodisulfide reductase involved in the final step of methanogenesis. FEBS Lett. 255: 67–71Google Scholar
  71. —— (1990) Purification and properties of heterodisulfide reductase fromMethanobacterium thermoautotrophicum (strain Marburg). Eur. J. Biochem. 193: 255–261Google Scholar
  72. Heiden S, Hedderich R, Setzke E & Thauer RK (1993) Purification of a cytochromeb-containing H2: heterodisulfide oxidoreductase complex from membranes ofMethanosarcina barkeri. Eur. J. Biochem. 213: 529–525Google Scholar
  73. Holder U, Schmidt DE, Stupperich E & Fuchs G (1985) Autotrophic synthesis of activated acetic acid from two CO2 inMethanobacterium thermoautotrophicum. Arch. Microbiol. 141: 225–238Google Scholar
  74. Hugenholtz J, Ivey DM & Ljungdahl LG (1987) Carbon monoxide-driven electron transport inClostridium thermoautotrophicum membranes. J. Bacteriol. 169: 5845–5847Google Scholar
  75. Ihara K & Mukohata Y (1991) The ATP synthase ofHalobacterium salinarum (halobium) is an archaebacterial type as revealed from the amino acid sequences of its two major subunits. Arch. Biochem. Biophys. 286: 111–116Google Scholar
  76. Inatomi KI (1986) Characterization and purification of the membrane-bound ATPase of the archaebacteriumMethanosarcina barkeri. J. Bacteriol. 167: 837–841Google Scholar
  77. Inatomi KI, Eya S, Maeda M & Futai M (1989a) Amino acid sequence of the alpha and beta subunits ofMethanosarcina barkeri ATPase deduced from cloned genes. J. Biol. Chem. 264: 10954–10959Google Scholar
  78. Inatomi KI, Kamagata Y & Nakamura K (1993) Membrane ATPase from the aceticlastic methanogenMethanothrix thermophila. J. Bacteriol. 175: 80–84Google Scholar
  79. Inatomi KI & Maeda M (1988) Isolation of subunits fromMethanosarcina barkeri ATPase-nucleotide-binding site in the alpha-subunit. J. Bacteriol. 170: 5960–5962Google Scholar
  80. Inatomi KI, Maeda M & Futai M (1989b) Dicyclohexylcarbodiimide-binding protein is a subunit of theMethanosarcinabarkeri ATPase complex. Biochem. Biophys. Res. Commun. 162: 1585–1590Google Scholar
  81. Jablonski PE & Ferry JG (1991) Purification and properties of methyl coenzyme M methylreductase from acetate-grownMethanosarcina thermophila. J. Bacteriol. 173: 2481–2487Google Scholar
  82. Jablonski PE, Lu WP, Ragsdale SW & Ferry JG (1993) Characterization of the metal centers of the corrinoid/iron-sulfur component of the CO dehydrogenase enzyme complex fromMethanosarcina thermophila by EPR spectroscopy and spectroelectrochemistry. J. Biol. Chem. 268: 325–329Google Scholar
  83. Jaun A & Pflatz A (1988) Coenzyme F430 from methanogenic bacteria: methane formation by reductive carbon-sulphurbond cleavage of methyl sulphonium ions catalysed by F430 pentamethyl ester. J. Chem. Soc., Chem. Commun. 293–294Google Scholar
  84. Jeris JS & McCarty PL (1965) The biochemistry of methane formation using14C-tracers. J. Water Poll. Control Fed. 37: 178–192Google Scholar
  85. Jetten MSM, Stams AJM & Zehnder AJB (1989a) Isolation and characterization of acetyl-coenzyme A synthetase fromMethanothrix soehngenii. J. Bacteriol. 171: 5430–5435Google Scholar
  86. —— (1989b) Purification and characterization of an oxygen-stable carbon monoxide dehydrogenase ofMethanothrix soehngenii. Eur. J. Biochem. 181: 437–441Google Scholar
  87. —— (1990) Purification and some properties of the methyl-CoM reductase ofMethanothrix soehngenii. FEMS Microbiol. Lett. 66: 183–186Google Scholar
  88. Jin CSL, Blanchard KD & Chen JS (1983) Two hydrogenases with distinct electron-carrier specificity and subunit composition inMethanobacterium formicicum. Biochim. Biophys. Acta 748: 8–20Google Scholar
  89. Johnson JL, Bastian NR, Schauer NL, Ferry JG & Rajagopalan KY (1991) Identification of molybdopterin guanine dinucleotide in formate dehydrogenase fromMethanobacterium formicicum. FEMS Microbiol. Lett. 77: 213–216Google Scholar
  90. Jones JB & Stadtman TC (1981) Selenium-dependent and selenium-independent formate dehydrogenases ofMethanococcus vanniellii. J. Biol. Chem. 256: 656–663Google Scholar
  91. Kaesler B & Schönheit P (1989a) The role of sodium ions in methanogenesis — formaldehyde oxidation to CO2 and 2 H2 in methanogenic bacteria is coupled with primary electrogenic Na+ translocation at a stoichiometry of 2–3 Na+/CO2. Eur. J. Biochem. 184: 223–232Google Scholar
  92. —— (1989b) The sodium cycle in methanogenesis-CO2 reduction to the formaldehyde level in methanogenic bacteria is driven by a primary electrochemical potential of Na+ generated by formaldehyde reduction to CH4. Eur. J. Biochem. 186: 309–316Google Scholar
  93. Kamlage B & Blaut M (1992) Characterization of cytochromes fromMethanosarcina strain Göl and their involvement in electron transport during growth on methanol. J. Bacteriol. 174: 3921–3927Google Scholar
  94. Kandler O & Hippe H (1977) Lack of peptidoglycan in the cell walls ofMethanosarcina barkeri. Arch. Microbiol. 113: 57–60Google Scholar
  95. Kandler O & König H (1978) Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria. Arch. Microbiol. 118: 141–152Google Scholar
  96. Karrasch M, Börner G, Enßle M & Thauer RK (1990) The molybdoenzyme formylmethanofuran dehydrogenase fromMethanosarcina barkeri contains a pterin cofactor. Eur. J. Biochem. 194: 367–372Google Scholar
  97. Keltjens JT & Drift C van der (1986) Electron transfer reactions in methanogens. FEMS Microbiol. Rev. 39: 259–303Google Scholar
  98. Kenealy WR, Thompson TE, Schubert KR & Zeikus JG (1982) Ammonia assimilation and synthesis of alanine, aspartate, and glutamate inMethanosarcina barkeri andMethanobacterium thermoautotrophicum. J. Bacteriol. 150: 1357–1365Google Scholar
  99. Kenealy WR & Zeikus JG (1982) One-carbon metabolism in methanogens: evidence for synthesis of a two carbon cellular intermediate and unification of catabolism and anabolism inMethanosarcina barkeri. J. Bacteriol. 151: 932–941Google Scholar
  100. Kengen SWM, Daas PJH, Duits EFG, Keltjens JT, Drift C van der & Vogels GD (1992) Isolation of a 5-hydroxybenzimidazolyl cobamide-containing enzyme involved in the methyltetrahydromethanopterin: coenzyme M methyltransferase reaction inMethanobacterium thermoautotrophicum. Biochim. Biophys. Acta 1118: 249–260Google Scholar
  101. Kengen SWM, Mosterd JJ, Nelissen RLH, Keltjens JT & Drift C van der (1988) Reductive activation of the methyltetrahydromethanopterin: coenzyme M methyltransferase fromMethanobacterium thermoautotrophicum strain ΔH. Arch. Microbiol. 150: 405–412Google Scholar
  102. Klein A, Allmansberger R & Bokranz M (1988) Comparative analysis of genes encoding methyl coenzyme M reductase in methanogenic bacteria. Mol. Gen. Genet. 213: 409–420Google Scholar
  103. Kobelt A, Pfaltz A, Ankel-Fuchs D & Thauer RK (1987) The L-form of N-7-mercaptoheptanoyl-0-phosphothreonine is the enantiomer active as component B in methyl-CoM reduction to methane. FEBS Lett. 214: 265–268Google Scholar
  104. Konheiser U, Pasti G, Bollschweiler C & Klein A (1984) Physical mapping of genes coding for two subunits of methyl CoM reductase component C ofMethanococcus voltae. Mol. Gen. Genet. 198: 146–152Google Scholar
  105. König H, Nusser E & Stetter KD (1985) Glycogen inMethanolobus andMethanococcus. FEMS Microbiol. Lett. 28: 265–269Google Scholar
  106. Krzycki J & Zeikus JG (1984) Characterization and purification of carbon monoxide dehydrogenase fromMethanosarcina barkeri. J. Bacteriol. 158: 231–237Google Scholar
  107. Kühn W, Fiebig K, Hippe H, Mah RA, Huser BA & Gottschalk G (1983) Distribution of cytochromes in methanogenic bacteria. FEMS Microbiol. Lett. 20: 407–410Google Scholar
  108. Kühn W, Fiebig K, Walther R & Gottschalk G (1979) Presence of a cytochromeb 559 inMethanosarcina barkeri. FEBS Lett. 105: 271–274Google Scholar
  109. Kühn W & Gottschalk G (1983) Characterization of the cytochromes occurring inMethanosarcina species. Eur. J. Biochem. 135: 89–94Google Scholar
  110. Länge S & Fuchs G (1985) Tetrahydromethanopterin, a coenzyme involved in autotrophic acetylcoenzyme A synthesis from 2 CO2 inMethanobacterium. FEBS Lett. 181: 303–306Google Scholar
  111. Länge S & Fuchs G (1987) Autotrophic synthesis of activated acetic acid from CO2 inMethanobacterium thermoautotrophicum-synthesis from tetrahydromethanopterin-bound C1 units and carbon monoxide. Eur. J. Biochem. 163: 147–154Google Scholar
  112. Lin S-K & Jaun B (1991) Coenzyme F430 from methanogenic bacteria: detection of a paramagnetic methylnickel (II) derivative of the pentymethylester by2H-MNR spectroscopy. Helv. Chim. Acta 74: 1725–1738Google Scholar
  113. Liu Y, Boone DR & Choy C (1990)Methanohalophilus oregonense sp. nov., a methylotrophic methanogen from an alkaline, saline aquifer. Int. J. Syst. Bacteriol. 40: 111–116Google Scholar
  114. Lovley DR, White RH & Ferry JG (1984) Identification of methylcoenzyme M as an intermediate in methanogenesis from acetate inMethanosarcina sp. J. Bacteriol. 160: 521–525Google Scholar
  115. Lübben M & Schäfer G (1987) A plasma-membrane associated ATPase from the thermoacidophilic archaebacteriumSulfolobus acidocaldarius. Eur. J. Biochem. 164: 533–540Google Scholar
  116. Lundie LL & Ferry JG (1989) Activation of acetate byMethanosarcina thermophila. Purification and characterization of phosphotransacctylasc. J. Biol. Chem. 264: 18392–19396Google Scholar
  117. Ma K, Linder D, Stetter KO & Thauer RK (1991) Purification and properties ofN 5,N 10-methylenetetrahydromethanopterin reductase (coenzyme F420-dependent) from the extreme thermophileMethanopyrus kandleri. Arch. Microbiol. 155: 593–600Google Scholar
  118. Ma K & Thauer RK (1990)N 5,N 10-Methylenetetrahydromethanopterin reductase fromMethanosarcina barkeri. FEMS Microbiol. Lett. 70: 119–124Google Scholar
  119. Mathrani I, Boone DR, Mah RA, Fox GE & Lan PP (1988)Methanohalophilus zhilinae sp. nov., an alkaliphilic halophilic methylotrophic methanogen. Int. J. Syst. Bacteriol. 38: 139–142Google Scholar
  120. Mayer F, Rohde M, Salzmann M, Jussofie A & Gottschalk G (1988) The methanoreductosome: a high-molecular-weight enzyme complex in the methanogenic strain Göl that contains components of the methylreductase system. J. Bacteriol. 170: 1438–1444Google Scholar
  121. Meijden P van der, Heythuysen HJ, Pouwels FP, Houwen FP & Drift C van der (1983a) Methyltransferase involved in methanol conversion byMethanosarcina barkeri. Arch. Microbiol. 134: 238–242Google Scholar
  122. Meijden P van der, Heythusen HJ, Sliepenbeek H, Houwen FP & Drift C van der (1983b) Activation and inactivation of methanol: 2-mercaptoethanesulfonic acid methyltransferase fromMethanosarcina barkeri. J. Bacteriol. 153: 6–11Google Scholar
  123. Meijden P van der, Jansen B, Drift C van der & Vogels GD (1983c) Involvement of corrinoids in the methylation of coenzyme M (2-mercaptoethanesulfonic acid) by methanol and enzymes fromMethanosarcina barkeri. FEMS Microbiol. Lett. 19: 247–251Google Scholar
  124. Meijden P van der, Te Brömmelstroet BE, Poirot CM, Drift C van der & Vogels GD (1984) Purification and properties of methanol: 5-hydroxybenzimidazolylcobamide methyltransferase fromMethanosarcina barkeri. J. Bacteriol. 160: 629–635Google Scholar
  125. Miller TL & Wolin MJ (1985)Methanosphaera stadtmanii, gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch. Microbiol. 141: 116–122Google Scholar
  126. Mountfort DO (1978) Evidence for ATP synthesis driven by a proton gradient inMethanosarcina barkeri. Biochem. Biophys. Res. Commun. 85: 1346–1350Google Scholar
  127. Moura I, Moura JJG, Santos H, Xavier AV, Burch G, Peck Jr. HD & LeGall J (1983) Proteins containing the factor F430 fromMethanosarcina barkeri andMethanobacterium thermoautotrophicum. Isolation and properties. Biochim. Biophys. Acta 742: 84–90Google Scholar
  128. Mukhopadhyay B & Daniels L (1989) Aerobic purification ofN 5,N 10-methylenetetrahydromethanopterin dehydrogenase, separated fromN 5,N 10-methenyltetrahydromethanopterin cyclohydrolase, fromMethanobacterium thermoautotrophicum strain Marburg. Can. J. Microbiol. 35: 499–507Google Scholar
  129. Müller V, Blaut M & Gottschalk G (1993) Bioenergetics of methanogenesis. In: Ferry JG (Ed) Methanogenesis (pp 360–406) Chapman & Hall, New YorkGoogle Scholar
  130. Muth E, Mörschel E & Klein A (1987) Purification and characterization of an 8-hydroxy-5-deazaflavin-reducing hydrogenase fromMethanococcus voltae. Eur. J. Biochem. 169: 571–577Google Scholar
  131. Naumann E, Fahlbusch K & Gottschalk G (1984) Presence of a trimethylamine: HS coenzyme M methyltransferase inMethanosarcina barkeri. Arch. Microbiol. 138: 79–83Google Scholar
  132. Ni SS & Boone DR (1991) Isolation and characterization of a dimethyl sulfide-degrading methanogen,Methanolobus siciliae HI350, from an oil well, characterization ofM. siciliae T4/MT, and emendation ofM. siciliae. Int. J. Syst. Bacteriol. 41: 410–416Google Scholar
  133. Noll KM, Rinehart Jr. KL, Tanner RS & Wolfe RS (1986) Structure of component B (7-mercaptoheptanoylthreonine phosphate) of the methylcoenzyme M methylreductase system ofMethanobacterium thermoautotrophicum. Proc. Natl. Acad. Sci. USA 83: 4238–4242Google Scholar
  134. Ossmer R, Mund T, Hartzell P, Konheiser U & Kohring GW (1986) Immunocytochemical localization of component C of the methylreductase system inMethanococcus voltae andMethanobacterium thermoautotrophicum. Proc. Natl. Acad. Sci. USA 83: 5789–5792Google Scholar
  135. Peck MW & Archer DB (1987) Improved assay of coenzyme F420 analogues from methanogenic bacteria. Biotechn. Techn. 1: 279–284Google Scholar
  136. Peinemann S, Müller V, Blaut M & Gottschalk G (1988) Bioenergetics of methanogenesis from acetate byMethanosarcina barkeri. J. Bacteriol. 170: 1369–1372Google Scholar
  137. Pellerin P, Gruson B, Prensier G, Albagnac G & Debeire P (1987) Glycogen inMethanothrix. Arch. Microbiol. 146: 377–381Google Scholar
  138. Pine MJ & Barker HA (1956) Studies on the methane formation. XII. The pathway of hydrogen in the acetate formation. J. Bacteriol. 71: 644–648Google Scholar
  139. Poirot CM, Kengen SWM, Walk E, Keltjens JT & Drift C van der (1987) Formation of methylcoenzyme M from formaldehyde by cell-free extracts ofMethanobacterium thermoautotrophicum. Evidence for the involvement of a corrinoid containing methyltransferase. FEMS Microbiol. Lett. 40: 7–13Google Scholar
  140. Przybyla AE, Robbins J, Menon M & Peck Jr. HD (1992) Structure-function relationship among the nickel-containing hydrogenases. FEMS Microbiol. Rev. 88: 109–136Google Scholar
  141. Ragsdale SW (1991) Enzymology of the acetyl-CoA pathway of CO2 fixation. Crit. Rev. Biochem. Mol. Biol. 26: 263–300Google Scholar
  142. Reeve JN & Beckler GS (1990) Conservation of primary structure in procaryotic hydrogenases. FEMS Microbiol. Rev. 87: 419–424Google Scholar
  143. Reeve JN, Beckler GS, Cram DS, Hamilton PT, Brown JW & Krzycki JA (1989) A hydrogenase-linked gene inMethanobacterium thermoautotrophicum strain ΔH encodes a polyferredoxin. Proc. Natl. Acad. Sci. USA 86: 3031–3035Google Scholar
  144. Rospert S, Breitung J, Ma K, Schwörer B, Zirngibl C, Thauer RK, Linder D, Huber R & Huber R (1991) Methyl-coenzyme M reductase and other enzymes involved in methanogenesis from CO2 and H2 in the extreme thermophileMethanopyrus kandleri. Arch. Microbiol. 156: 49–55Google Scholar
  145. Rospert S, Linder D, Ellermann J & Thauer RK (1990) Two genetically distinct methyl-coenzyme M reductases inMethanobacterium thermoautotrophicum strain Marburg and ΔH. Eur. J. Biochem. 194: 871–877Google Scholar
  146. Schäfer G & Meyering-Vos M (1992) F-type or V-type—the chimeric nature of the archaebacterial ATP synthase. Biochim. Biophys. Acta 1101: 232–235Google Scholar
  147. Schauer NL & Ferry JG (1980) Metabolism of formate inMethanobacterium formicicum. J. Bacteriol. 142: 800–807Google Scholar
  148. —— (1986) Composition of the coenzyme F420-dependent formate dehydrogenase fromMethanobacterium formicicum. J. Bacteriol. 165: 405–411Google Scholar
  149. Schmitz RA, Richter M, Linder D & Thauer RK (1992) A tungsten-containing active formylmethanofuran dehydrogenase in the thermophilic archaeonMethanobacterium wolfei. Eur. J. Biochem. 207: 559–565Google Scholar
  150. Schönheit P & Perski HJ (1983) ATP synthesis driven by potassium diffusion potential inMethanobacterium thermoautotrophicum is stimulated by sodium. FEMS Microbiol. Lett. 20: 263–267Google Scholar
  151. Sherf BA & Reeve JN (1990) Identification of themcrD gene product and its association with component C of methyl coenzyme M methylreductase inMethanococcus vannielii. J. Bacteriol. 172: 1828–1833Google Scholar
  152. Shieh J & Whitman WB (1988) Autotrophic acetyl coenzyme A biosynthesis inMethanococcus maripalustris. J. Bacteriol. 170: 3072–3079Google Scholar
  153. —— (1987) Pathway of acetate assimilation in autotrophic and heterotrophic methanococci. J. Bacteriol. 169: 5327–5329Google Scholar
  154. Shuber AP, Orr EC, Recny MA, Schendel PF, May HD, Schauer NL & Ferry JG (1986) Cloning, expression, and nucleotide sequence of the formate dehydrogenase genes fromMethanobacterium thermoautotrophicum. J. Biol. Chem. 261: 12942–12947Google Scholar
  155. Simpson PG & Whitman WB (1993) Anabolic pathways in methanogens. In: Ferry JG (Ed) Methanogenesis (pp 445–472) Chapman & Hall, New YorkGoogle Scholar
  156. Smith MR & Mah RA (1966) Kinetics of acetate metabolism during sludge digestion. Appl. Microbiol. 14: 368–371Google Scholar
  157. —— (1980) Acetate as sole carbon and energy source for growth ofMethanosarcina strain 227. Appl. Environ. Microbiol. 39: 993–999Google Scholar
  158. Sparling R & Daniels L (1990) Regulation of formate dehydrogenase activity inMethanococcus thermolithotrophicus. J. Bacteriol. 172: 1464–1469Google Scholar
  159. Stan-Lotter H, Bowman EM & Hochstein LI (1991) Relationship of the membrane ATPase fromHalobacterium saccharovorum to vacuolar ATPases. Arch. Biochem. Biophys. 284: 116–119Google Scholar
  160. Sumi M, Sato MH, Denda K, Date T & Yoshida M (1992) A DNA fragment homologous to F1-ATPase β-subunit was amplified from genomic DNA ofMethanosarcina barkeri — indication of an archaebacterial F-type ATPase. FEBS Lett. 314: 207–210Google Scholar
  161. Taylor CD & Wolfe RS (1974) Structure and methylation of coenzyme M (HS-CH2-CH2-SO3). J. Biol. Chem. 249: 4879–4885Google Scholar
  162. Te Brömmelstroet BE, Hensgens CMH, Keltjens JT, Drift C van der & Vogels GD (1990a) Purification and properties of 5,10-methylenctetrahydromethanopterin reductase, a coenzyme F420-dependent enzyme, fromMethanobacterium thermoautotrophicum. J. Biol. Chem. 265: 1852–1857Google Scholar
  163. Te Brömmelstroet BW, Geerts WJ, Keltjens JT, Drift C van der & Vogels GD (1991) Purification and properties of 5,10-methylenetetrahydromethanopterin dehydrogenase and 5,10-methylenetetrahydromethanopterin reductase, two coenzyme F420-dependent enzymes, fromMethanosarcina barkeri. Biochim. Biophys. Acta 1079: 293–302Google Scholar
  164. Te Brömmelstroet BW, Hensgens CMH, Geerts JW, Keltjens JT, Drift C van der & Vogels GD (1990b) Purification and properties of 5,10-methenyltetrahydromethanopterin cyclohydrolase fromMethanosarcina barkeri. J. Bacteriol. 172: 564–571Google Scholar
  165. Terlesky KC & Ferry JG (1988) Ferredoxin requirement for electron transport from the carbon monoxide dehydrogenase complex to a membrane-boundhydrogenase in acetate-grownMethanosarcina thermophila. J. Biol. Chem. 263: 4075–4079Google Scholar
  166. Terlesky KC, Nelson MJK & Ferry JG (1986) Isolation of an enzyme complex with carbon monoxide dehydrogenase activity containing corrinoid and nickel from acetate-grownMethanosarcina thermophila. J. Bacteriol. 168: 1053–1058Google Scholar
  167. Walsh C (1986) Naturally occurring 5-deazaflavins: biological redox roles. Acc. Chem. Res. 19: 216–221Google Scholar
  168. Weil CF, Cram DS, Sherf BA & Reeve JN (1988) Structure and comparative analysis of the genes encoding component C of methyl coenzyme M methylreductase in the extremely thermophilic archaebacteriumMethanothermus fervidus. J. Bacteriol. 170: 4718–4726Google Scholar
  169. Weimer PJ & Zeikus JG (1979) Acetate assimilation pathway ofMethanosarcina barkeri. J. Bacteriol. 137: 332–339Google Scholar
  170. White RH & Zhou D (1993) Biosynthesis of the coenzymes in methanogens. In: Ferry JG (Ed) Methanogenesis (pp 410–444) Chapman & Hall, New YorkGoogle Scholar
  171. Winner C & Gottschalk G (1989) H2 and CO2 production from methanol or formaldehyde by the methanogenic bacterium strain Göl treated with 2-bromoethanesulfonic acid. FEMS Microbiol. Lett. 65: 259–264Google Scholar
  172. Yamazaki S (1982) A selenium-containing hydrogenase fromMethanococcus vanniellii. J. Biol. Chem. 257: 7926–7929Google Scholar
  173. Zeikus JG, Fuchs G, Kenealy W & Thauer RK (1977) Oxidoreductase involved in cell carbon synthesis ofMethanobacterium thermoautotrophicum. J. Bacteriol. 132: 604–613Google Scholar
  174. Zinder SH (1993) Physiological ecology of methanogens. In: Ferry JG (Ed) Methanogenesis (pp 128–206) Chapman & Hall, New YorkGoogle Scholar
  175. Zirngibl C, Hedderich R & Thauer RK (1990)N 5,N 10-methylenetetrahydromethanopterin dehydrogenase fromMethanobacterium thermoautotrophicum has hydrogenase activity. FEBS Lett. 261: 112–116Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Michael Blaut
    • 1
  1. 1.Institut für Mikrobiologie der Universität GöttingenGöttingenGermany

Personalised recommendations