Antonie van Leeuwenhoek

, Volume 66, Issue 1–3, pp 151–164 | Cite as

Photosynthetic electron transport and anaerobic metabolism in purple non-sulfur phototrophic bacteria

  • Alastair G. McEwan
Research Articles

Abstract

Purple non-sulfur phototrophic bacteria, exemplifed byRhodobacter capsulatus andRhodobacter sphaeroides, exhibit a remarkable versatility in their anaerobic metabolism. In these bacteria the photosynthetic apparatus, enzymes involved in CO2 fixation and pathways of anaerobic respiration are all induced upon a reduction in oxygen tension. Recently, there have been significant advances in the understanding of molecular properties of the photosynthetic apparatus and the control of the expression of genes involved in photosynthesis and CO2 fixation. In addition, anaerobic respiratory pathways have been characterised and their interaction with photosynthetic electron transport has been described. This review will survey these advances and will discuss the ways in which photosynthetic electron transport and oxidation-reduction processes are integrated during photoautotrophic and photoheterotrophic growth.

Key words

purple non-sulfur bacteria Rhodobacter photosynthesis CO2 fixation anaerobic respiration gene expression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aagaard J & Sistrom WR (1972) Control of synthesis of reaction center bacteriochlorophyll in photosynthetic bacteria. Photochem. Photobiol. 15: 209–225Google Scholar
  2. Allen JP, Feher G, Yeates TO, Komiya H & Rees D (1987) The structure of the reaction center fromRhodobacter sphaeroides R-26: the cofactors. Proc. Natl. Acad. Sci. USA 84: 5730–5734Google Scholar
  3. Ballard AL, McEwan AG, Richardson DJ, Jackson JB & Ferguson SJ (1990)Rhodobacter capsulatus strain BK5 possesses a membrane-bound respiratory nitrate reductase rather than the periplasmic enzyme found in other strains. Arch. Microbiol. 154: 301–303Google Scholar
  4. Bamforth CW & Quayle JR (1978) The dye-linked alcohol dehydrogenase ofRhodopseudomonas acidophila. Biochem. J. 169: 677–686Google Scholar
  5. —— (1979) Structural aspects of a dye-linked alcohol dehydrogenase ofRhodopseudomonas acidophila. Biochem. J. 181: 517–524Google Scholar
  6. Barr SB & Kogama T (1991) Oxidative stress responses inEscherichia coli andSalmonella typhimurium. Microbiol. Rev. 55: 561–585Google Scholar
  7. Bastian NR, Kay CJ, Barber MJ & Rajagopalan KV (1991) Spectroscopic studies of the molybdenum-containing dimethylsulphoxide reductase fromRhodobacter sphaeroides f. sp.denitrificans. J. Biol. Chem. 266: 45–51Google Scholar
  8. Bauer CE, Buggy J & Mosley C (1993) Control of photosystem genes inRhodobacter capsulatus. Trends Genet. 9: 56–60Google Scholar
  9. Bauer CE, Young DA & Marrs BC (1988) Analysis of theRhodobacter capsulatus puf operon location of the oxygen-regulated promoter region and the identification of additionalpuf-encoded genes. J. Biol. Chem. 263: 4820–4827Google Scholar
  10. Bauer CE & Marrs BL (1988)Rhodobacter capsulatus puf operon encodes a regulatory protein (PufQ) for bacteriochlorophyll synthesis. Proc. Natl. Acad. Sci. 85: 7074–7078Google Scholar
  11. Beatty JT & Gest H (1981) Biosynthetic and bioenergetic functions of citric acid cycle reactions inRhodopseudomonas capsulata. J. Bacteriol. 148: 584–593Google Scholar
  12. Belasco JG, Beatty JT, Adams CW, Gabain A von & Cohen SN (1985) Differential expression of photosynthetic genes inRhodopseudomonas capsulata results from segmental differences in stability within a polycistronic transcript. Cell 40: 171–181Google Scholar
  13. Bell LC, Richardson DJ & Ferguson SJ (1990) Periplasmic and membrane-bound respiratory nitrate reductases inThiosphera pantotropha: the periplasmic enzyme catalyses the first step in aerobic denitrification. FEBS Lett. 265: 85–87Google Scholar
  14. ——, (1992) Identification of nitric oxide reductase activity inRhodobacter capsulatus: the electron transport pathway can either use or bypass both cytochrome c2 and the cytochrome bc1 complex. J. Gen. Microbiol. 138: 437–443Google Scholar
  15. Benson N, Farrar JA, McEwan AG & Thomson AJ (1992) Detection of the optical bands of Molybdenum (v) in DMSO reductase (Rhodobacter capsulatus) by low temperature MCD spectroscopy. FEBS Lett. 307: 169–172Google Scholar
  16. Bourret RB, Borkovich KA & Simon MI (1991) Signal transduction pathways involving protein phosphorylation in prokaryotes. Ann. Rev. Biochem. 60: 401–441Google Scholar
  17. Brune DC & Truper HG (1986) Noncyclic electron transport in chromatophores from photolithotrophically grownRhodobacter sulfidophilus. Arch. Microbiol. 145: 295–301Google Scholar
  18. Brune DC (1989) Sulfur oxidation by phototrophic bacteria. Biochim. Biophys. Acta 975: 189–221Google Scholar
  19. Burke DH, Alberti M, Armstrong GA & Hearst JE (1991) The complete nucleotide sequence of the 46 kb photosynthetic gene cluster ofRhodobacter capsulatus. EMBL Data Library accession number Z11165Google Scholar
  20. Byrne MD & Nicholas DJD (1987) A membrane-bound dissimilatory nitrate reductase fromRhodobacter sphaeroides f. sp.denitrificans. Biochim. Biophys. Acta 915: 120–124Google Scholar
  21. Chory J, Donohue TJ, Varga AR, Staehelin LA & Kaplan S (1984) Induction of the photosynthetic membranes ofRhodopseudomonas sphaeroides: biochemical and morphological studies. J. Bacteriol. 159: 540–554Google Scholar
  22. Cohen-Bazire G, Sistrom WR & Stanier RY (1957) Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J. Cell Comp. Physiol. 49: 25–68Google Scholar
  23. Cotton NPJ & Jackson JB (1988) Energy coupling to ATP synthesis and pyridine nucleotide transhydrogenase in chromatophores from photosynthetic bacterium. FEBS Lett. 229: 303–307Google Scholar
  24. Daldal F, Cheng S, Applebaum J, Davidson E & Prince RC (1986) Cytochrome c2 is not essential for photosynthetic growth ofRhodopseudomonas capsulata. Proc. Natl. Acad. Sci. USA 83: 2012–2016Google Scholar
  25. Deisenhofer J, Epp O, Miki K, Huber R & Michel H (1984) X-ray structure analysis of a membrane protein complex. J. Mol. Biol. 180: 385–398Google Scholar
  26. Deisenhofer J & Michel H (1989) The photosynthetic reaction centre from the purple bacteriumRhodopseudomonas viridis. EMBO J. 8: 2149–2170Google Scholar
  27. Donohue TJ, McEwan AG, Doren S van, Crofts AR & Kaplan S (1988) Phenotypic and genetic characterization of cytochrome c2 deficient mutants ofRhodobacter sphaeroides. Biochemistry 27: 1918–1925Google Scholar
  28. Donohue TJ & Kaplan S (1991) Genetic techniques inRhodospirillaceae. Methods Enzymol. 204: 459–485Google Scholar
  29. Drews G & Imhoff JF (1991) Purple phototrophic bacteria. In: Shively JM & Barton LL (Eds) Variations in Autotrophic Life (pp 51–97) Academic Press, LondonGoogle Scholar
  30. Drews G & Oelze J (1981) Organization and differentiation of membranes of phototrophic bacteria. Adv. Microbiol. Physiol. 22: 1–92Google Scholar
  31. Drews G (1985) Structure and functional organization of light-harvesting complexes and photochemical reaction centres in membranes of phototrophic bacteria. Microbiol. Rev. 49: 59–70Google Scholar
  32. Dutton PL & Prince RC (1978) Reaction center-driven cytochrome interactions in electron and proton translocation and energy coupling. In: Clayton RK & Sistrom WR (Eds) The Photosynthetic Bacteria (pp 525–570) Plenum Press, New YorkGoogle Scholar
  33. Dutton PL & Evans WC (1978) Metabolism of aromatic compounds byRhodospirillaceae. In: Clayton RK & Sistrom WR (Eds) The Photosynthetic Bacteria (pp 719–726) Plenum Press, New YorkGoogle Scholar
  34. Falcone DL, Quivey RG & Tabita FR (1988) Transposon mutagenesis and physiological analysis of strains containing inactivated form I and form II ribulose bisphosphate carboxylase/oxygenase genes. J. Bacteriol. 170: 5–11Google Scholar
  35. Falcone DL & Tabita FR (1991) Expression of endogenous and foreign ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) genes in a Rubisco deletion mutant ofRhodobacter sphaeroides. J. Bacteriol. 173: 2099–2108Google Scholar
  36. Farchaus JW, Barz WP, Grunberg H & Oesterhelt D (1992) Studies of thepufX polypeptide and its requirement for photoheterotrophic growth inRhodobacter capsulatus. EMBO J. 11: 2779–2788Google Scholar
  37. Feher G, Allen JP, Okamura MY & Rees DC (1989) Structure and function of bacterial photosynthetic reaction centres. Nature 339: 111–116Google Scholar
  38. Ferguson SJ, Jackson JB & McEwan AG (1987) Anaerobic respiration in theRhodospirillaceae: characterisation of pathways and evaluation of roles in redox balancing during photosynthesis. FEMS Microbiol. Rev. 46: 117–143Google Scholar
  39. Gennis RB, Barquera B, Hacker B, Doren SR von, Arnaud S, Crofts AR, Davidson E, Gray KA & Daldal F (1993) The bc1 complexes ofRhodobacter sphaeroides andRhodobacter capsulatus. J. Bioenerg. Biomemb. 25: 195–209Google Scholar
  40. Gibson JL & Tabita FR (1977) Different molecular forms of ribulose 1,5-bisphosphate carboxylase fromRhodopseudomonas sphaeroides. J. Biol. Chem. 252: 943–949Google Scholar
  41. —— (1985) Structural differences in the catalytic subunits of form I and form II ribulose 1,5-bisphosphate carboxylase/oxygenase fromRhodopseudomonas sphaeroides. J. Bacteriol. 164: 1188–1193Google Scholar
  42. —— (1988) Localization and mapping of CO2 fixation genes within two gene clusters inRhodobacter sphaeroides. J. Bacteriol. 170: 2153–2158Google Scholar
  43. —— (1993) Nucleotide sequence and functional analysis of CbbR, a positive regulator of the Calvin cycle operons ofRhodobacter sphaeroides. J. Bacteriol. 175: 5778–5784Google Scholar
  44. Gilles-Gonzales MA, Ditta GS & Helinski DR (1991) A haemoprotein with kinase activity encoded by the oxygen sensor ofRhozobium meliloti. Nature 350: 170–172Google Scholar
  45. Hallenbeck PL, Lerchen R, Hessler P & Kaplan S (1990a) Roles of CfxA, CfxB and external electron acceptors in regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase expression ofRhodobacter sphaeroides. J. Bacteriol. 172: 1736–1748Google Scholar
  46. —— (1990b) Phosphoribulokinase activity and regulation of CO2 fixation critical for photosynthetic growth ofRhodobacter sphaeroides. J. Bacteriol. 172: 1749–1761Google Scholar
  47. Hallenbeck PL & Kaplan S (1988) Structural gene regions ofRhodobacter sphaeroides involved in CO2 fixation. Photosynth. Res. 19: 63–71Google Scholar
  48. Hanlon SP, Holt RA & McEwan AG (1992) The 44 kDa c-type cytochrome induced inRhodobacter capsulatus during growth with dimethylsulphoxide as an electron acceptor is a cytochrome c peroxidase. FEMS Microbiol. Lett. 97: 283–288Google Scholar
  49. Hanlon SP, Holt RA, Moore GR & McEwan AG (1994) Isolation and characterisation of a strain ofRhodobacter sulfidophilus: a bacterium which grows autotrophically with dimethylsulfide as electron donor. Microbiology (in press)Google Scholar
  50. Hansen TA & Gemerden H van (1972) Sulfide utilization by purple nonsulfur bacteria. Arch. Microbiol. 86: 49–56Google Scholar
  51. Hansen TA & Veldkamp H (1973)Rhodopseudomonas sulfidophila, nov. spec., a new species of the purple nonsulfur bacteria. Arch. Microbiol. 92: 45–58Google Scholar
  52. Henikoff S, Haughn GW, Calvo M & Wallace JC (1988) A large family of bacterial activator proteins. Proc. Natl. Acad. Sci. USA 85: 6620–6606Google Scholar
  53. Imhoff JH, Truper HG & Pfennig N (1984) Rearrangement of the species and genera of the phototrophic ‘Purple Nonsulfur Bacteria’. Int. J. Syst. Bacteriol. 34: 340–343Google Scholar
  54. Jackson JB (1988) Bacterial photosynthesis. In: Anthony C (Ed) Bacterial Energy Transduction (pp 317–376) Academic Press, LondonGoogle Scholar
  55. —— (1991) The proton-translocating nicotinamide adenine dinucleotide transhydrogenase. J. Bioenerg. Biomemb. 23: 715–741Google Scholar
  56. Jenney FE & Daldal F (1993) A novel membrane-associated c-type cytochrome cyt. cy can mediate the photosynthetic growth ofRhodobacter capsulator andRhodobacter sphaeroides. EMBO J. 12: 1283–1292Google Scholar
  57. Jones MR, McEwan AG & Jackson JB (1990) The role of c-type cytochromes in the photosynthetic electron transport pathway ofRhodobacter capsulatus. Biochim. Biophys. Acta 1019: 59–66Google Scholar
  58. Jones MR, Richardson DJ, McEwan AG, Ferguson SJ & Jackson JB (1990b)In vivo redox poising of the cyclic electron transport system ofRhodobacter capsulatus and the effects of the auxiliary oxidants nitrate, nitrous oxide, and trimethylamide-N-oxide as revealed by multiple short flash excitation. Biochim. Biophys. Acta 1017: 209–216Google Scholar
  59. Jouanneau Y & Tabita FR (1986) Independent regulation of synthesis of form I and form II ribulose bisphosphate carboxylase/oxygenase inRhodopseudomonas sphaeroides. J. Bacteriol. 165: 620–624Google Scholar
  60. Kelly DJ, Richardson DJ, Ferguson SJ & Jackson JB (1988) Isolation of transposon Tn5 insertion mutants ofRhodobacter capsulatus unable to reduce trimethylamine-N-oxide and dimethylsulphoxide. Arch. Microbiol. 150: 138–144Google Scholar
  61. Kiley PJ & Kaplan S (1987) Cloning, DNA sequence, and expression of theRhodobacter sphaeroides light-harvesting B800–850 genes. J. Bacteriol. 169: 3268–3276Google Scholar
  62. —— (1988) Molecular genetics of photosynthetic membrane biosynthesis inRhodobacter sphaeroides. Microbiol. Rev. 52: 50–69Google Scholar
  63. Klemme JH (1969) Studies on the mechanism of NAD-photoreduction by chromatophores of the facultative phototrophRhodopseudomonas capsulata. Z. Naturforsch 246: 67–76Google Scholar
  64. Klug G (1991) Endonucleolytic degradation ofpuf mRNA inRhodobacter capsulatus is influenced by oxygen. Proc. Natl. Acad. Sci. USA 88: 1765–1769Google Scholar
  65. —— (1993a) Regulation of expression of photosynthesis genes in anoxygenic photosynthetic bacteria. Arch. Microbiol. 159: 397–404Google Scholar
  66. —— (1993b) The role of mRNA degradation in the regulated expression of bacterial photosynthesis genes. Mol. Microbiol. 9: 1–7Google Scholar
  67. La Monica RF & Marrs BL (1976) The branched respiratory system of photosynthetically grownRhodopseudomonas capsulata. Biochim. Biophys. Acta 423: 431–439Google Scholar
  68. Lascelles J (1960) The formation of ribulose 1,5-diphosphate carboxylase by growing cultures ofAthiorhodaceae. J. Gen. Microbiol. 23: 449–510Google Scholar
  69. Lee KJ, Kiley PJ & Kaplan S (1989) Posttranscriptional control ofpuc operon expression of B800–850 light-harvesting complex formation inRhodobacter sphaeroides. J. Bacteriol. 171: 3391–3405Google Scholar
  70. Madigan MT & Gest H (1979) Growth of the photosynthetic bacteriumRhodopseudomonas capsulata chemoautotrophically in darkness with H2 as the energy source. J. Bacteriol. 137: 524–530Google Scholar
  71. —— (1978) Growth of a photosynthetic bacterium anaerobically in darkness, supported by ‘oxidant dependent’ sugar fermentation. Arch. Microbiol. 117: 119Google Scholar
  72. McEwan AG, Cotton NPJ, Ferguson SJ & Jackson JB (1985) The role of auxiliary oxidants in the maintenance of a balanced redox poise for photosynthesis in bacteria. Biochim. Biophys. Acta 810: 140–147Google Scholar
  73. McEwan AG, Wetzstein HG, Jackson JB & Ferguson SJ (1985) Periplasmic location of the terminal reductase of trimethylamine-N-oxide and dimethylsulphoxide respiration in the photosynthetic bacteriumRhodopseudomonas capsulata. Biochim. Biophys. Acta 806: 410–417Google Scholar
  74. McEwan AG, Wetzstein HG, Meyer O, Jackson JB & Ferguson SJ (1987) The periplasmic nitrate reductase ofRhodobacter capsulatus: purification, characterisation and distinction from a single reductase for trimethylamine-N-oxide, dimethylsulphoxide and chlorate. Arch. Microbiol. 147: 340–345Google Scholar
  75. McEwan AG, Ferguson SJ & Jackson JB (1991) Purification and properties of dimethylsulphoxide reductase fromRhodobacter capsulatus. Biochem. J. 274: 305–307Google Scholar
  76. McEwan AG, Richardson DJ, Hudig H, Ferguson SJ & Jackson JB (1989) Identification of cytochromes involved in trimethylamine-N-oxide and dimethylsulphoxiderespiration inRhodobacter capsulatus. Biochim. Biophys. Acta 810: 308–314Google Scholar
  77. McEwan AG, Jackson JB & Ferguson SJ (1984) Rationalisation of the properties of nitrate reductase inRhodopseudomonas capsulata. Arch. Microbiol. 137: 344–349Google Scholar
  78. McEwan AG, Greenfield AJ, Wetzstein HG, Jackson JB & Ferguson SJ (1985) Nitrous oxide respiration by members of the familyRhodospirillaceae and the nitrous oxide reductase ofRhodopseudomonas capsulata. J. Bacteriol. 164: 823–830Google Scholar
  79. McEwan AG, Ferguson SJ & Jackson JB (1983) Electron flow to dimethylsulphoxide and trimethylamine-N-oxide generates a membrane potential inRhodopseudomonas capsulata. Arch. Microbiol. 136: 300–305Google Scholar
  80. McEwan AG, Richardson DJ, Jones MR, Jackson JB & Ferguson SJ (1990) The function and components of anaerobic respiration inRhodobacter capsulatus. In: Drews G & Dawes EA (Eds) Molecular Biology of Membrane-bound Complexes of Phototrophic Bacteria (pp 433–442) Plenum Press, New YorkGoogle Scholar
  81. Michelski WP, Hein DP & Nicholas DJD (1986) Purification and characterization of nitrous oxide reductase fromRhodopseudomonas sphaeroides f. sp.denitrificans. Biochim. Biophys. Acta 872: 50–60Google Scholar
  82. Muller FM (1933) On the metabolism of the purple sulfur bacteria in organic media. Arch. Mikrobiol. 4: 131–166Google Scholar
  83. Myatt JF, Cotton NPJ & Jackson JB (1987) Protonmotive activity of the cytochrome bc1 complex in chromatophores ofRhodobacter capsulatus in the presence of myxothiazol and antimycin A. Biochim. Biophys. Acta 890: 251–259Google Scholar
  84. Neutzling O, Pfleider M & Truper HG (1985) Dissimilatory sulphur metabolism in phototrophic ‘nonsulphur’ bacteria. J. Gen. Microbiol. 131: 791–798Google Scholar
  85. Nitschke W & Rutherford AW (1991) Photosynthetic reaction centres: variations on a common structural theme? Trends Biochem. Sci. 16: 241–245Google Scholar
  86. Olson JG, Ormerod JG, Amesz J, Stackebrandt E & Truper HG (1988) Green photosynthetic bacteria. Plenum Press, New YorkGoogle Scholar
  87. Parsonage D, Greenfield AJ & Ferguson SJ (1986) Evidence that energy conserving electron transport pathways to nitrate and cytochrome to branch at ubiquinone inParacoccus denitrificans. Arch. Microbiol. 145: 191–196Google Scholar
  88. Pollock V & Barber MJ (1993) Cloning biotin sulphoxide reductase. FASEB J. Abstract 647Google Scholar
  89. Preker P, Hubner P, Schmahl M, Klipp W & Bickle TA (1992) Mapping and characterization of the promoter elements of the regulatorynif genesrpoN,nifA1 andnifA2 inRhodobacter capsulatus. Mol. Microbiol. 6: 1035–1047Google Scholar
  90. Prince RC, Davidson E, Haith CE & Daldal F (1986) Photosynthetic electron transfer in the absence of cytochrome c2 inRhodopseudomonas capsulata: cytochrome c2 is not essential for electron flow from the cytochrome bc1 complex to the photochemical reaction center. Biochemistry 25: 5208–5214Google Scholar
  91. Prince RC & Daldal F (1987) Physiological electron donors to the photochemical reaction center ofRhodobacter capsulatus. Biochim. Biophys. Acta 894: 370–378Google Scholar
  92. Richardson DJ, King GF, Kelly DJ, McEwan AG, Jackson JB & Ferguson SJ (1988) The role of auxiliary oxidants in maintaining redox balance during phototrophic growth ofRhodobacter capsulatus on propionate and butyrate. Arch. Microbiol. 150: 130–137Google Scholar
  93. Richardson DJ, McEwan AG, Jackson JB & Ferguson SJ (1990) Identification of cytochromes involved in the transfer of electrons to the periplasmic nitrate reductase ofRhodobacter capsulatus and resolution of a soluble nitrate reductase-cytochrome c552 redox complex. Eur. J. Biochem. 194: 263–170Google Scholar
  94. Richardson DJ, Bell LC, McEwan AG, Jackson JB & Ferguson SJ (1991) Cytochrome c2 is essential for electron transfer to nitrous oxide reductase from physiological substrates inRhodobacter capsulatus and can act as an electron donorin vitro. Eur. J. Biochem. 199: 677–683Google Scholar
  95. Rott MA, Witthuhn VC, Schilke BA, Soranno M, Ali A & Donohue TJ (1993) Genetic evidence for the role of isocytochrome c2 in photosynthetic growth ofRhodobacter sphaeroides spd mutants. J. Bacteriol. 175: 358–366Google Scholar
  96. Rott MA, Fitch J, Meyer TE & Donohue TJ (1992) Regulation of a cytochrome c2 isoform in wild-type and cytochrome c2 mutant strains ofRhodobacter sphaeroides. Arch. Biochem. Biophys. 292: 576–582Google Scholar
  97. Rott MA & Donohue TJ (1990)Rhodobacter sphaeroides spd mutations allow cytochrome c2-independent photosynthetic growth. J. Bacteriol. 172: 1954–1961Google Scholar
  98. Satoh T, Hashino Y & Vitamura H (1976)Rhodopseudomonas f. sp.denitrificans, a denitrifying strain as a subspecies ofRhodopseudomonas sphaeroides. Arch. Microbiol. 108: 265–269Google Scholar
  99. Satoh T & Kurihara FN (1987) Purification and properties of dimethylsulphoxide reductase containing a molybdenum cofactor from a photodenitrifierRhodopseudomonas sphaeroides f. sp.denitrificans. J. Biochem. 102: 191–197Google Scholar
  100. Sawada E, Satoh T & Kitamura H (1978) Purification and properties of a dissimilatory nitrite reductase of a denitrifying, phototrophic bacterium. Plant Cell Physiol. 19: 1339–1351Google Scholar
  101. Sawada E & Satoh T (1980) Periplasmic location of dissimilatory nitrate and nitrite reductase in a denitrifying phototrophic bacterium. Plant Cell Physiol. 23: 1121–1124Google Scholar
  102. Schneider K, Muller U, Schram U & Klipp W (1993) Demonstration of a molybdenum- and vanadium-independent nitrogenase in anif HDK-deletion mutant ofRhodobacter capsulatus. Eur. J. Biochem. 195: 653–661Google Scholar
  103. Schultz JE & Weaver PF (1982) Fermentation and anaerobic respiration byRhodospirillum rubrum andRhodopseudomonas capsulata. J. Bacteriol. 149: 181–190Google Scholar
  104. Scolnick PA & Marrs BL (1987) Genetic research with photosynthetic bacteria. Ann. Rev. Microbiol. 41: 703–726Google Scholar
  105. Sganga MW & Bauer CE (1992) Regulatory factors controlling photosynthetic reaction center and light-harvesting gene expression inRhodobacter capsulatus. Cell 68: 945–954Google Scholar
  106. Shively JM, Davidson E & Marrs BL (1984) Derepression in the synthesis of the intermediate and large forms of ribulose 1,5-bisphosphate carboxylase/oxygenase inRhodopseudomonas capsulata. Arch. Microbiol. 138: 233–236Google Scholar
  107. Sojka GA (1978) Metabolism of nonaromatic organic compounds. In: Clayton RK & Sistrom WR (Eds) The Photosynthetic Bacteria (pp 707–718) Plenum Press, New YorkGoogle Scholar
  108. Stackebrandt E, Murray RGE & Truper HG (1988)Proteobacteria classic nov. a name for the phylogenetic taxon that includes the ‘Purple Bacteria and their relatives’. Int. J. Syst. Bacteriol. 38: 321–325Google Scholar
  109. Stock JB, Ninfa AJ & Stock AM (1989) Protein phosphorylation and regulation of adaptive response in bacteria. Microbiol. Rev. 53: 450–490Google Scholar
  110. Tabita FR, Gibson JL, Bowien B, Dijkhuizen L & Meijer WG (1992) Uniform designation for genes of the Calvin-Benson-Bassham reductive pentose phosphate pathway of bacteria. FEMS Microbiol. Lett. 99: 107–110Google Scholar
  111. Tabita FR (1988) Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. Microbiol. Rev. 52: 155–189Google Scholar
  112. Taylor DP, Cohen SN, Clark WG & Marrs BL (1983) Alignment of the genes and restriction maps of the photosynthetic region of theRhodopseudomonas capsulata chromosome by a conjugation-mediated marker rescue technique. J. Bacteriol. 154: 580–590Google Scholar
  113. Tichy H-V, Albien KO, Gad'on N & Drews G (1991) Analysis of theRhodobacter capsulates puc operon: thepuc C gene plays a central role in the regulation of LHII (B800–850 complex) expression. EMBO J 10: 2949–2956Google Scholar
  114. Uffen RL (1978) Fermentative metabolism and growth of photosynthetic bacteria. In: Clayton RK & Sistrom WR (Eds) The Photosynthetic Bacteria (pp 857–872) Plenum Press, New YorkGoogle Scholar
  115. Vignais PM, Colbeau A, Willison JC & Jouanneau Y (1985) Hydrogenase, nitrogenase, and hydrogen metabolism in the photosynthetic bacteria. Adv. Microbiol. Physiol. 26: 155–234Google Scholar
  116. Visscher PT & Gemerden H van (1991) Photo-autotrophic growth ofThiocapsa roseopersicina on dimethylsulphide. FEMS Microbiol. Lett. 81: 247–250Google Scholar
  117. Wang G, Angermuller S & Klipp W (1993) Characterization ofRhodobacter capsulatus genes encoding a molybdenum transport system and putative molybdenum-pterin binding proteins. J. Bacteriol. 175: 3031–3042Google Scholar
  118. Wang X, Falcone DL & Tabita FR (1993a) Reductive pentose phosphate-independent CO2 fixation inRhodobacter sphaeroides and evidence that ribulose bisphosphate carboxylase/oxygenase activity serves to maintain the redox balance of the cell. J. Bacteriol. 175: 3372–3379Google Scholar
  119. Wang X, Modak HV & Tabita FR (1993b) Photolithoautotrophic growth and control of CO2 fixation inRhodobacter sphaeroides andRhodospirillum rubrum in the absence of Ribulosebisphosphate carboxylase-oxygenase. J. Bacteriol. 175: 7109–7114Google Scholar
  120. Ward JA, Hunter CN & Jones OTG (1983) Changes in the cytochrome composition ofRhodopseudomonas sphaeroides grown aerobically, photosynthetically and on dimethylsulphoxide. Biochem. J. 212: 783–790Google Scholar
  121. Wellington CL, Bauer CE & Beatty JT (1992) Superoperons in purple non-sulfur bacteria: the tip of the iceberg? Can. J. Microbiol. 38: 20–27Google Scholar
  122. Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B & Schink B (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362: 834–836Google Scholar
  123. Windhovel U & Bowien B (1991) Identification ofcfxR, an activator gene of autotrophic CO2 fixation inAlcaligenes eutrophus. Mol. Microbiol. 5: 2695–2705Google Scholar
  124. Wood PM (1988) Chemolithotrophy. In: Anthony C (Ed) Bacterial Energy Transduction (pp 183–230) Academic Press, LondonGoogle Scholar
  125. Wooton JC, Nicholson RE, Cock JM, Walters DE, Burke JF, Doyle WA & Bray RC (1991) Enzymes depending on pterin molybdenum cofactor: sequence families, spectroscopic properties of molybdenum and possible cofactor binding domains. Biochim. Biophys. Acta 1057: 157–185Google Scholar
  126. Wu YQ, MacGregor BJ, Donohue TJ, Kaplan S & Yen B (1991) Genetic and physical mapping of theRhodobacter sphaeroides photosynthetic gene cluster from R-prime pWS2. Plasmid 25: 163–176Google Scholar
  127. Yen HC & Marrs BL (1977) Growth ofRhodopseudomonas capsulatus under dark anaerobic conditions with dimethylsulphoxide. Arch. Biochem. Biophys. 181: 411Google Scholar
  128. Yokota S, Urata K & Satoh T (1984) Redox properties of membrane-bound b-type cytochromes and a soluble c-type cytochrome of nitrate reductase in a photodenitrifier,Rhodopseudomonas sphaeroides f. sp.denitrificans. J. Biochem. 95: 1535–1541Google Scholar
  129. Youvan DC & Ismail S (1985) Light harvesting II (B800–850 complex) structural genes fromRhodopseudomonas capsulata. Proc. Natl. Acad. Sci. USA 82: 58–62Google Scholar
  130. Zeyer J, Eicher P, Wakeham SG & Schwarzenbach RP (1987) Oxidation of dimethylsulfide to dimethyl sulfoxide by phototrophic purple bacteria. Appl. Env. Microbiol. 53: 2026–2032Google Scholar
  131. Zsebo KKM & Hearst JE (1984) Genetic-physical mapping of a photosynthetic gene cluster fromRhodopseudomonas capsulata. Cell 37: 937–947Google Scholar
  132. Zuber H (1986) Structure of light harvesting antenna complexes of photosynthetic bacteria, cyanobacteria and red algae. Trends Biochem. Sci. 11: 414–419Google Scholar
  133. Zumft WG (1993) The biological role of nitric oxide in bacteria. Arch. Microbiol. 160: 253–264Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Alastair G. McEwan
    • 1
  1. 1.Department of MicrobiologyThe University of QueenslandBrisbaneAustralia

Personalised recommendations