Antonie van Leeuwenhoek

, Volume 66, Issue 1–3, pp 129–150 | Cite as

Oxygen control inRhizobium

  • Jacques Batut
  • Pierre Boistard
Research Articles


Rhizobia are gram-negative bacteria with two distinct habitats: the soil rhizosphere in which they have a saprophytic and, usually, aerobic life and a plant ecological niche, the legume nodule, which constitutes a microoxic environment compatible with the operation of the nitrogen reducing enzyme nitrogenase. The purpose of this review is to summarize the present knowledge of the changes induced in these bacteria when shifting to a microoxic environment. Oxygen concentration regulates the expression of two major metabolic pathways: energy conservation by respiratory chains and nitrogen fixation. After reviewing the genetic data on these metabolic pathways and their response to oxygen we will put special emphasis on the regulatory molecules which are involved in the control of gene expression. We will show that, although homologous regulatory molecules allow response to oxygen in different species, they are assembled in various combinations resulting in a variable regulatory coupling between genes for microaerobic respiration and nitrogen fixation genes. The significance of coordinated regulation of genes not essential for nitrogen fixation with nitrogen fixation genes will also be discussed.

Key words

microaerobiosis nitrogen fixation oxygen respiration Rhizobium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agron PG, Ditta GS & Helinski DR (1993) Oxygen regulation ofnifA transcription in vitro. Proc. Natl. Acad. Sci. USA 90: 3506–3510Google Scholar
  2. Aguilar OM, Reilander H, Arnold W & Pühler A (1987)Rhizobium meliloti nifN (fixF) gene is part of an operon regulated by anifA-dependent promoter and codes for a polypeptide homologous to thenifK gene product. J. Bacteriol. 169: 5393–5400Google Scholar
  3. Albright CM, Huala E & Ausubel FM (1989) Prokaryotic signal transduction mediated by sensor and regulator protein pairs. Ann. Rev. Genet 23: 311–336Google Scholar
  4. Anthamatten D & Hennecke H (1991) The regulatory status of thefixL- andfixJ- like genes inBradyrhizobium japonicum may be different from that inRhizobium meliloti. Mol. Gen. Genet. 225: 38–48Google Scholar
  5. Anthamatten D, Scherb B & Hennecke H (1992) Characterization of afixLJ regulatedBradyrhizobium japonicum gene sharing similarity with theEscherichia coli fnr andRhizobium meliloti fixK genes. J. Bacteriol. 174: 2111–2120Google Scholar
  6. Appleby CA (1984) Leghemoglobin andRhizobium respiration. Ann. Rev. Plant. Physiol. 35: 443–478Google Scholar
  7. Arigoni F, Kaminski PA, Hennecke H & Elmerich C (1991) Nucleotide sequence of thefixABC region ofAzorhizobium caulinodans ORS571. Similarity of thefixB product with cukaryotic flavoproteins, characterization offixX, and identification ofnifO asnifW. Mol. Gen. Genet. 225: 514–520Google Scholar
  8. Arnold W, Rump A, Klipp W, Priefer UB & Pühler A (1988) Nucleotide sequence of a 24,206 base pair DNA fragment carrying the entire nitrogen fixation gene cluster ofKlebsiella pneumoniae. J. Mol. Biol. 203: 715–738Google Scholar
  9. Arp DJ (1992) Hydrogen cycling in symbiotic bacteria. In: Evans H, Burris R & Stacey G (Eds) Biological Nitrogen Fixation (pp 432–460). Chapman & Hall, New YorkGoogle Scholar
  10. Atkins CA, Hunt S & Layzell DB (1993) Gaseous diffusive properties of soybean nodules cultured with non-ambient pO2. Physiologia Plantarum 87: 89–95Google Scholar
  11. Austin S & Dixon R (1992) The prokaryotic enhancer binding protein NTRC has an ATPase activity which is phosphorylation and DNA dependent. EMBO J. 11: 2219–2228Google Scholar
  12. Avissar YJ & Nadler KD (1978) Stimulation of tetrapyrrole formation inRhizobium japonicum by restricted aeration. J. Bacteriol. 135: 782–789Google Scholar
  13. Batut J, Daveran-Mingot ML, David M, Jacobs J, Garnerone AM & Kahn D (1989)fixK, a gene homologous withfnr andcrp fromEscherichia coli, regulates nitrogen fixation genes both positively and negatively inRhizobium meliloti. EMBO J. 8: 1279–1286Google Scholar
  14. Batut J, de Philip P, Reyrat JM, Waelkens F & Boistard P (1993) Oxygen regulation of nitrogen fixation gene expression inRhizobium meliloti. In: Nester EW & Verma DPS (Eds) Advances in Molecular Genetics of Plant-Microbe Interactions (pp 183–191). Kluwer Academic Publishers, DordrechtGoogle Scholar
  15. Batut J, Terzaghi B, Ghérardi M, Huguet M, Terzaghi E, Garnerone AM, Boistard P & Huguet T (1985) Localization of a symbioticfix region onRhizobium meliloti pSym megaplasmid more than 200 kilobases from thenod-nif region. Mol. Gen. Genet. 199: 232–239Google Scholar
  16. Bergersen FJ, Turner GL, Bogusz D & Appleby CA (1988) Fixation of N2 by bacteroids from stem nodules ofSesbania rostrata. J. Gen. Microbiol. 134: 1807–1810Google Scholar
  17. Beynon JL, Williams MK & Cannon FC (1988) Expression and functional analysis of theRhizobium meliloti nifA gene. EMBO J. 7: 7–14Google Scholar
  18. Bishop PE & Premakumar R (1992) Alternative nitrogen fixation systems. In: Stacey G, Burris RH & Evans HJ (Eds) Biological Nitrogen Fixation (pp 736–762). Chapman & Hall, New YorkGoogle Scholar
  19. Bott M, Bolliger M & Hennecke H (1990) Genetic analysis of the cytochromec-aa3 branch of theBradyrhizobium japonicum respiratory chain. Mol. Microbiol. 4: 2147–2157Google Scholar
  20. Bott M, Preisig O & Hennecke H (1992) Genes for a second terminal oxidase inBradyrhizobium japonicum. Arch. Microbiol. 158: 335–343Google Scholar
  21. Bott M, Ritz D & Hennecke H (1991) TheBradyrhizobium japonicum cycM gene encodes a membrane-anchored homolog of mitochondrial cytochrome c. J. Bacteriol. 173: 6766–6772Google Scholar
  22. Buikema WJ, Klingensmith JA, Gibbons SL & Ausubel FM (1987) Conservation of structure and location ofRhizobium meliloti andKlebsiella pneumoniae nifB genes. J. Bacteriol. 169: 1120–1126Google Scholar
  23. Carlson TA, Martin GB & Chelm BK (1987) Differential transcription of the two glutamine synthetase genes ofBradyrhizobium japonicum. J. Bacteriol. 169: 5861–5866Google Scholar
  24. Colonna-Romano S, Arnold W, Schlüter A, Boistard P, Pülher A & Priefer UB (1990) An Fnr-like protein encoded inRhizobium leguminosarum biovarviciae shows structural and functional homology toRhizobium meliloti FixK. Mol. Gen. Genet. 223: 138–147Google Scholar
  25. Daveran ML (1988) Structure et transcription des gènes de fixation de l'azote deRhizobium meliloti. PhD thesis. Université Paul Sabatier, Toulouse, FranceGoogle Scholar
  26. David M, Daveran ML, Batut J, Dedieu A, Domergue O, Ghai J, Hertig C, Boistard P & Kahn D (1988) Cascade regulation ofnif gene expression inRhizobium meliloti. Cell 54: 671–683Google Scholar
  27. Dean DR & Jacobson MR (1992) Biochemical genetics of nitrogenase. In: Stacey G, Burris RH and Evans HJ (Eds) Biological Nitrogen Fixation (pp 763–834). Chapman & Hall, New YorkGoogle Scholar
  28. de Bruijn FJ, Rossbach S, Schneider M, Ratet P, Messmer S, Szeto WW, Ausubel FM & Schell J (1989)Rhizobium meliloti 1021 has three differentially regulated loci involved in glutamine biosynthesis, none of which is essential for symbiotic nitrogen fixation. J. Bacteriol. 171: 1673–1682Google Scholar
  29. Dénarié J & Cullimore J (1993) Lipo-oligosaccharide nodulation factors: new class of signaling molecules mediating recognition and morphogenesis. Cell. 74: 951–954Google Scholar
  30. Denèfle P, Kush A, Norel F, Paquelin A & Elmerich C (1987) Biochemical and genetic analysis of thenifHDKE region ofRhizobium ORS571. Mol. Gen. Genet. 207: 280–287Google Scholar
  31. de Philip P, Batut J & Boistard P (1990)Rhizobium meliloti FixL is an oxygen sensor and regulatesR. meliloti nifA andfixK genes differently inEscherichia coli. J. Bacteriol. 172: 4255–4262Google Scholar
  32. de Philip P, Soupène E, Batut J & Boistard P (1992) Modular structure of the FixL protein ofRhizobium meliloti. Mol. Gen. Genet. 235: 49–54Google Scholar
  33. de Vries W, Ras J, Stam H, Van Vlerken MMA, Hilgert U, de Bruijn FJ & Stouthamer AH (1988) Isolation and characterization of hydrogenase-negative mutants ofAzorhizobium caulinodans ORS571. Arch. Microbiol. 150: 595–599Google Scholar
  34. Ditta G, Virts E, Palomares A & Kim CH (1987) ThenifA gene ofRhizobium meliloti is oxygen regulated. J. Bacteriol. 169: 3217–3223Google Scholar
  35. Dreyfus BL, Elmerich C & Dommergues Y (1983) Free livingRhizobium strain able to grow on N2 as the sole nitrogen source. Appl. Environ. Microbiol. 45: 711–713Google Scholar
  36. Drummond MH, Contreras A & Mitchenall LA (1990) The function of isolated domains and chimaeric proteins constructed from the transcriptional activators NifA and NtrC ofKlebsiella pneumoniae. Mol. Microbiol. 4: 29–37Google Scholar
  37. Drummond M, Whitty P & Wooton J (1986) Sequence and domain relationships ofntrC andnifA fromKlebsiella pneumoniae: homologies to other regulatory proteins. EMBO J. 5: 441–447.Google Scholar
  38. Earl CD, Ronson CW & Ausubel FM (1987) Genetic and structural analysis of theRhizobium meliloti fixA, fixB, fixC, andfixX genes. J. Bacteriol. 169: 1127–1136Google Scholar
  39. Ebeling S, Noti JD & Hennecke H (1988) Identification of a newBradyrhizobium japonicum gene (frxA) encoding a ferredoxin like protein. J. Bacteriol. 170: 1999–2001Google Scholar
  40. Espin G, Moreno S, Wild M, Meza R & Iaccarino M (1990) A previously unrecognized glutamine synthetase expressed inKlebsiella pneumoniae from theglnT locus ofRhizobium leguminosarum. Mol. Gen. Genet. 223: 513–516Google Scholar
  41. Filser MMK, Moscatelli C, Lamberti A, Vincze E, Guida M, Salzano G & Iaccarino M (1986) Characterization and cloning of twoRhizobium leguminosarum genes coding for glutamine synthetase activities. J. Gen. Microbiol. 132: 2561–2569Google Scholar
  42. Fischer HM, Acuna G, Anthamatten D, Arigoni F, Babst M, Brouwer P, Kaspar T, Kullik I, Preisig O, Scherb B, Weidenhaupt M & Hennecke H (1993a) Two oxygen-responsive regulatory cascades control nitrogen fixation genes inBradyrhizobium japonicum. In: Palacios R, Mora J & Newton WE (Eds) New Horizons in Nitrogen Fixation (pp 411–416). Kluwer Academic Publishers, DordrechtGoogle Scholar
  43. Fischer HM, Alvarez-Morales & Hennecke H (1986) The pleiotropic nature of symbiotic regulatory mutants:Bradyrhizobium japonicum nifA gene is involved in control ofnif gene expression and formation of determinate symbiosis. EMBO J. 5: 1165–1173Google Scholar
  44. Fischer HM, Babst M, Kaspar T, Acuna G, Arigoni F & Hennecke H (1993b) One member of agroESL-like chaperonin multigene family inBradyrhizobium japonicum is co-regulated with symbiotic nitrogen fixation genes. EMBO J. 12: 2901–2912Google Scholar
  45. Fischer HM, Bruderer T & Hennecke H (1988) Essential and nonessential domains in theBradyrhizobium japonicum NifA protein: identification of indispensable cysteine residues potentially involved in redox activity and/or metal binding. Nucleic. Acids Res. 16: 2207–2224Google Scholar
  46. Fischer HM & Hennecke H (1987) Direct response ofBradyrhizobium japonicum nifA- mediatednif gene regulation to cellular oxygen status. Mol. Gen. Genet. 209: 621–626Google Scholar
  47. Gabel C & Maier RJ (1990) Nucleotide sequence of thecoxA encoding subunit I of cytochromeaa3 ofBradyrhizobium japonicum. Nucleic. Acids Res. 18: 6143Google Scholar
  48. Gebhardt C, Turner GL, Gibson AH, Dreyfus BL & Bergensen FJ (1984) Nitrogen-fixing growth in continuous culture of a strain ofRhizobium sp. isolated from stem nodules ofSesbania rostrata. J. Gen. Microbiol. 130: 843–848Google Scholar
  49. Gilles-Gonzalez MA, Ditta GS & Helinski DR (1991) A haemoprotein with kinase activity encoded by the oxygen sensor ofRhizobium meliloti. Nature 350: 170–172Google Scholar
  50. Gilles-Gonzalez MA & Gonzalez (1993) Regulation of the kinase activity of heme protein FixL from the two-component system FixL/FixJ ofRhizobium meliloti. J. Biol. Chem. 268: 16293–16297Google Scholar
  51. Govezenski D, Greener T, Segal G & Zamir A (1991) Involvement of GroEL innif gene regulation and nitrogenase assembly. J. Bacteriol. 173: 6339–6346Google Scholar
  52. Gubler M & Hennecke H (1986)fixA, B and C genes are essential for symbiotic and free-living microaerobic nitrogen fixation. FEBS Lett. 200: 186–192Google Scholar
  53. Guerinot ML & Chelm BK (1986) Bacterial δ-aminolevulinic acid synthase activity is not essential for leghemoglobin formation in soybean/Bradyrhizobium japonicum symbiosis. Proc. Natl. Acad. Sci. USA 83: 1837–1841Google Scholar
  54. Haaker H & Klugkist J (1987) The bioenergetics of electron transport to nitrogenase. FEMS Microbiol. Rev. 46: 57–71Google Scholar
  55. Hartwig U, Boller B & Nösberger J (1987) Oxygen supply limits nitrogenase activity of clover nodules after defoliation. Annals Bot. 59: 285–291Google Scholar
  56. Hawkins FKL, Kennedy C & Johnston AWB (1991) ARhizobium leguminosarum gene required for symbiotic nitrogen fixation, melanin synthesis and normal growth on certain growth media. J. Gen. Microbiol. 137: 1721–1728Google Scholar
  57. Hawkins FKL & Johnston AWB (1988) Transcription of aRhizobium leguminosarum biovarphaseoli gene needed for melanin synthesis is activated bynifA ofRhizobium andKlebsiella pneumoniae. Mol. Microbiol. 2: 331–337Google Scholar
  58. Hennecke H (1993) The role of respiration in symbiotic nitrogen fixation. In: Palacios R, Mora J & Newton WE (Eds) New Horizons in Nitrogen Fixation (pp. 55–64). Kluwer Academic Publishers, DordrechtGoogle Scholar
  59. Hennecke H, Anthamatten D, Babst M, Bott M, Fischer HM, Kasper T, Kullik I, Loferer H, Preisig O, Ritz D & Weidenhaupt M (1993) Genetic and physiologic requirements for optimal bacteroid function in theBradyrhizobium japonicum soybean symbiosis. In: Nester EW & Verma DPS (Eds) Advances in molecular genetics of plant-microbe interactions, vol 2 (pp 199–207). Kluwer Academic Publishers, DordrechtGoogle Scholar
  60. Hertig C, Li RY, Louarn AM, Garnerone AM, David M, Batut J, Kahn D & Boistard P (1989)Rhizobium meliloti regulatory genefixJ activates transcription ofRhizobium meliloti nifA andfixK genes inEscherichia coli. J. Bacteriol. 171: 1736–1738Google Scholar
  61. Hidalgo E, Palacios JM, Murillo J & Ruiz-Argüeso T (1992) Nucleotide sequence and characterization of four additional genes of the hydrogenase structural operon fromRhizobium leguminosarum bv.viciae. J. Bacteriol. 174: 4130–4139Google Scholar
  62. Hill S (1976) The apparent ATP requirement for nitrogen fixation in growingKlebsiella pneumoniae. J. Gen. Microbiol. 95: 297–312Google Scholar
  63. Hill S (1988) How is nitrogenase regulated by oxygen? FEMS Microbiol. Rev. 54: 111–130Google Scholar
  64. Hill S (1992) Physiology of nitrogen fixation in free-living heterotrophs. In: Evans H, Burris R & Stacey G (Eds) Biological Nitrogen Fixation (pp. 87–134). Chapman & Hall, New-YorkGoogle Scholar
  65. Iannetta PPM, De Lorenzo C, James EK, Fernandez-Pascual M, Sprent JI, Lucas MM, Witty JF, De Felipe MR & Minchin FR (1993) Oxygen diffusion in lupin nodules. I. Visualization of diffusion barrier operation. J. Experiment Bot. 44: 1461–1467Google Scholar
  66. Kahn D, David M, Domergue O, Daveran ML, Ghai J, Hirsch P & Batut J (1989)Rhizobium meliloti fixGHI sequence predicts involvement of a specific cation pump in symbiotic nitrogen fixation. J. Bacteriol. 171: 929–939Google Scholar
  67. Kahn D & Ditta G (1991) Modular structure of FixJ: homology of the transcriptional activator domain with the −35 binding domain of sigma factors. Mol. Microbiol. 5: 987–997Google Scholar
  68. Kaminski PA & Elmerich C (1991) Involvement offixLJ in the regulation of nitrogen fixation inAzorhizobium caulinodans. Mol. Microbiol. 5: 665–673Google Scholar
  69. Kaminski PA, Mandon K, Arigoni F, Desnoues N & Elmerich C (1991) Regulation of nitrogen fixation inAzorhizobium caulinodans: identification of afixK-like gene, a positive regulator ofnifA. Mol. Microbiol. 5: 1983–1991Google Scholar
  70. Kaminski PA, Norel F, Desnoues N, Kush A, Salzano G & Elmerich C (1988) Characterization of thefixABC region ofAzorhizobium caulinodans ORS571 and identification of a new nitrogen fixation gene. Mol. Gen. Genet. 214: 496–502Google Scholar
  71. Keefe RG & Maier RJ (1993) Purification and characterization of an O2-utilizing cytochrome-c oxidase complex fromBradyrhizobium japonicum bacteroid membranes. Biochim. Biophys. Acta 1183: 91–104Google Scholar
  72. Kim H, Choonbal Y & Maier RJ (1991) Commoncis-acting region responsible for transcriptional regulation ofBradyrhizobium japonicum hydrogenase by nickel, oxygen, and hydrogen. J. Bacteriol. 173: 3993–3999Google Scholar
  73. Klipp W, Reiländer H, Schlüter A, Krey R & Pühler A (1989) TheRhizobium meliloti fdxN gene encoding a ferredoxin-like protein is necessary for nitrogen fixation and is cotranscribed withnifA andnifB. Mol. Gen. Genet. 216: 293–302Google Scholar
  74. Krey R, Pühler A & Klipp W (1992) A defined aminoacid exchange close to the putative nucleotide binding site is responsible for an oxygen-tolerant variant of theRhizobium meliloti NifA protein. Mol. Gen. Genet. 234: 433–441Google Scholar
  75. Kündig C, Hennecke H & Göttfert M (1993) Correlated physical and genetic map of theBradyrhizobium japonicum 110 Genome. J. Bacteriol. 175: 613–622Google Scholar
  76. Kustu S, Santero E, Keener J, Popham & Weiss D (1989) Expression of σ54 (NtrA)-dependent genes is probably united by a common mechanism. Microbiol. Rev. 53: 367–376Google Scholar
  77. Layzell DB, Hunt S, Moloney AHM, Fernando SM & Diaz del Castillo L (1990) Physiological, metabolic and developmental implications of O2 regulation in legume nodules. In: Gresshoff PM, Roth LE, Stacey G & Newton WE (Eds) Nitrogen fixation: achievements and objectives (pp 21–32). Chapman & Hall, New-YorkGoogle Scholar
  78. Leong SA, Williams PH & Ditta GS (1985) Analysis of the 5′ regulatory region of the gene for delta-aminolevulinic acid synthetase ofRhizobium meliloti. Nucleic Acids Res. 13: 5965–5976Google Scholar
  79. Lois AF, Ditta GS & Helinski DR (1993a) The oxygen sensor FixL ofRhizobium meliloti is a membrane protein containing four possible transmembrane segments. J. Bacteriol. 175: 1103–1109Google Scholar
  80. Lois AF, Weinstein M, Ditta GS & Helinski DR (1993b) Autophosphorylation and phosphatase activity of the oxygen-sensing protein FixL ofRhizobium meliloti are coordinately regulated by oxygen. J. Biol. Chem. 268: 4370–4375Google Scholar
  81. Lukat GS, Mc Cleary WR, Stock AM & Stock JB (1992) Phosphorylation of bacterial response regulator proteins by low molecular weight phospho-donors. Proc. Natl. Acad. Sci. USA 89: 718–722Google Scholar
  82. Maier RJ, Campbell NER, Hanus FJ, Simpson FB, Russel SA & Evans HJ (1978) Expression of hydrogenase activity in free-livingRhizobium japonicum. Proc. Natl. Acad. Sci. USA 75: 3258–3262Google Scholar
  83. Mandon K, Kaminski PA, Mougel C, Desnoues N, Dreyfus B & Elmerich C (1993) Role of thefixGHI region ofAzorhizobium caulinodans in free-living and symbiotic nitrogen fixation. FEMS Microbiol. Lett. 114: 185–190Google Scholar
  84. Martin GB, Chapman KA & Chelm BK (1988) Role of theBradyrhizobium japonicum ntrcC gene product in differential regulation of the glutamine synthetase II gene (glnII). J. Bacteriol. 170: 5452–5459Google Scholar
  85. Martin GB & Chelm BK (1991)Bradyrhizobium japonicum ntrBC/glnA andnifA/glnA mutants: Further evidence that separate regulatory pathways governglnII expression in free-living and symbiotic cells. Mol. Plant-Microbe Interact. 4: 254–261Google Scholar
  86. Merrick MJ (1992) Regulation of nitrogen fixation genes in free-living and symbiotic bacteria. In: Stacey G, Burris RH & Evans HJ (Eds) Biological Nitrogen Fixation (pp 835–876). Chapman & Hall, New YorkGoogle Scholar
  87. Monson EK, Weinstein M, Ditta G & Helinski DR (1992) The FixL protein ofRhizobium meliloti can be separated into a heme-binding oxygen-sensing domain and a functional C-terminal kinase domain. Proc. Natl. Acad. Sci. USA 89: 4280–4284Google Scholar
  88. Morett E, Fischer HM & Hennecke H (1991) Influence of oxygen on DNA binding, positive control, and stability of theBradyrhizobium japonicum nifA regulatory protein. J. Bacteriol. 173: 3478–3487Google Scholar
  89. Morett E, Kreutzer R, Cannon W & Buck M (1990) The influence of theKlebsiella pneumoniae regulatory genenifL upon the transcriptional activator protein NifA. Mol. Microbiol. 4: 1253–1258Google Scholar
  90. Morett E, Olvera L & Hennecke H (1993) Overlapping promoters for two polymerase holoenzymes regulate transcription ofnifA inBradyrhizobium japonicum. In: Palacios R, Mora J & Newton WE (Eds) New horizons in nitrogen fixation (p 483). Kluwer Academic Publishers, DordrechtGoogle Scholar
  91. Murphy PJ, Heycke N, Trenz SP, Ratet P, De Bruijn FJ & Schell J (1988) Synthesis of an opine-like compound, a rhizopine, in alfalfa nodules is symbiotically regulated. Proc. Natl. Acad. Sci. USA 85: 9133–9137Google Scholar
  92. Murphy PJ & Saint CP (1991) Rhizopines in the legume-Rhizobium symbiosis. In: Verma DPS (Ed) Molecular signals in Plant-Microbe communications (pp 378–390). CRC Press, LondonGoogle Scholar
  93. Murphy PJ, Trenz SP, Grzemski W, De Bruijn FJ & Schell J (1993) TheRhizobium meliloti rhizopinemos locus is a mosaic structure facilitating its symbiotic regulation. J. Bacteriol. 175: 5193–5204Google Scholar
  94. Noonan B, Motherway M & O'Gara F (1992) Ammonia regulation of theRhizobium meliloti nitrogenase structural and regulatory genes under free living conditions: Involvement of thefixL gene product? Mol. Gen. Genet. 234: 423–428Google Scholar
  95. Norel F, Desnoues N & Elmerich C (1985) Characterization of DNA sequences homologous toKlebsiella pneumoniae nifA, nifH, D, K andE in tropicalRhizobium ORS571. Mol. Gen. Genet. 199: 352–356Google Scholar
  96. O'Brian MR & Maier RJ (1989) Molecular aspects of the energetics of nitrogen fixation inRhizobium-legume symbiosis. Biochim. Biophys. Acta. 974: 229–246Google Scholar
  97. Palacios JM, Murillo J, Leyva A & Ruiz-Argüeso T (1990) Differential expression of hydrogen uptake (hup genes) in vegetative and symbiotic cells ofRhizobium leguminosarum. Mol. Gen. Genet. 221: 363–370Google Scholar
  98. Parkinson JS & Kofoid EC (1992) Communication modules in bacterial signaling proteins. Annu. Rev. Genet. 26: 71–112Google Scholar
  99. Pawlowski K, Gough SP, Kannangara CG & de Bruijn FJ (1993) Characterization of a 5-aminolevulinic acid synthase mutant ofAzorhizobium caulinodans ORS571. Mol. Plant-Microbe Interact. 6: 35–44Google Scholar
  100. Preisig O, Anthamatten D & Hennecke H (1993) Genes for a microaerobically induced oxidase complex inBradyrhizobium japonicum are essential for a nitrogen fixing endosymbiosis. Proc. Natl. Acad. Sci. USA 90: 3309–3313Google Scholar
  101. Ratet P, Pawlowski K, Schell J & de Bruijn FJ (1989) TheAzorhizobium caulinodans nitrogen-fixation regulatory gene,nifA, is controlled by the cellular nitrogen and oxygen status. Mol. Microbiol. 3: 825–838Google Scholar
  102. Rey L, Hidalgo E, Palacios J & Ruiz-Argüeso T (1992) Nucleotide sequence and organization of an H2-uptake gene cluster fromRhizobium leguminosarum bv.viciae containing a rubredoxin-like gene and four additional open reading frames. J. Mol. Biol. 228: 998–1002Google Scholar
  103. Rey L, Murillo J, Hernando Y, Hidalgo E, Cabrera E, Imperial J & Ruiz-Argüeso T (1993a) Molecular analysis of a microaerobically induced operon for hydrogenase synthesis inRhizobium leguminosarum biovar viciae. Mol. Microbiol. 8: 471–481Google Scholar
  104. Rey L, Palacios JM, Hernando Y, Urzainqui A, Brito B, Cabrera E, Imperial J & Ruiz-Argüeso T (1993b). Molecular analysis of aRhizobium leguminosarum gene cluster (hyp ABFCDE) required for hydrogenase activity. In: Palacios R, Mora J & Newton WE (Eds) New Horizons in nitrogen fixation (p 491). Kluwer Academic Publishers, DordrechtGoogle Scholar
  105. Reyrat JM, David M, Blonski C, Boistard P & Batut J (1993) Oxygen-regulated in vitro transcription ofRhizobium meliloti nifA andfixK genes. J. Bacteriol. 175: 6867–6872Google Scholar
  106. Rusangawa E & Gupta RS (1993) Cloning and characterization of multiplegroEL chaperonin-encoding genes inRhizobium meliloti. Gene 126: 67–75Google Scholar
  107. Ruvkun GB & Ausubel FM (1980) Interspecies homology of nitrogenase genes. Proc. Natl. Acad. Sci. USA 77: 191–195Google Scholar
  108. Ruvkun GB, Sundaresan V & Ausubel FM (1982) Directed transposon Tn5 mutagenesis and complementation analysis ofRhizobium meliloti symbiotic nitrogen fixation genes. Cell 29: 551–559Google Scholar
  109. Saint CP, Wexler M, Murphy PJ, Tempé J, Tate ME & Murphy PJ (1993) Characterization of genes for synthesis and catabolism of a new rhizopine induced in nodules byRhizobium meliloti Rm220-3: Extension of the Rhizopine concept. J. Bacteriol. 175: 5205–5215Google Scholar
  110. Sanders DA, Gillece-Castro BL, Burlingame AL & Koshland Jr DE (1992) Phosphorylation site of NtrC, a protein phosphatase whose covalent intermediate activates transcription. J. Bacteriol. 174: 5117–5122Google Scholar
  111. Sanjuan J & Olivares J (1989) Implication ofnifA in regulation of genes located on aRhizobium meliloti cryptic plasmid that affect nodulation efficiency. J. Bacteriol. 171: 4154–4161Google Scholar
  112. Sanjuan J & Olivares J (1991) NifA-NtrA regulatory system activates transcription ofnfe, a gene locus involved in nodulation competitiveness ofRhizobium meliloti. Arch. Microbiol. 155: 543–548Google Scholar
  113. Schlüter A, Patschkowski, Unden G & Priefer UB (1992) TheRhizobium leguminosarum FnrN protein is functionally similar toEscherichia coli Fnr and promotes heterologous oxygen-dependent activation of transcription. Mol. Microbiol. 6: 3395–3404Google Scholar
  114. Schlüter A, Patschkowski T, Weidner S, Unden G, Hynes MF & Priefer UB (1993) Functional and regulatory characteristics of FnrN, an oxygen-responsive transcriptional activator inRhizobium leguminosarum bv.viciae. In: Palacios R, Mora J & Newton WE (Eds) New Horizons in Nitrogen Fixation (p 493). Kluwer Academic Publishers, DordrechtGoogle Scholar
  115. Somerville JE & Chelm BK (1988) Regulation of heme biosynthesis inBradyrhizobium japonicum. In: Palacios R & Verma DPS (Eds) Molecular Genetics of Plant-Microbe Interactions (pp 111–112). APS Press, St-Paul, MI, USAGoogle Scholar
  116. Somerville JE & Kahn ML (1983) Cloning of the glutamine synthetase I gene fromRhizobium meliloti. J. Bacteriol. 156: 168–176Google Scholar
  117. Stam H, van Verseveld W, de Vries W & Stouthamer AH (1984) Hydrogen oxidation and efficiency of nitrogen fixation in succinate-limited chemostat cultures ofRhizobium ORS571. Arch. Microbiol. 139: 53–60Google Scholar
  118. Stanley J, Dowling DN & Broughton WJ (1988) Cloning ofhemA fromRhizobium sp. NGR234 and symbiotic phenotype of a gene-directed mutant in diverse legume genera. Mol. Gen. Genet. 215: 32–37Google Scholar
  119. Stigter J, Schneider M & de Bruijn FJ (1993)Azorhizobium caulinodans nitrogen fixation (nif/fix) gene regulation: mutagenesis of thenifA -24/-12 promoter element, characterization of antrA (rpoN) gene, and derivation of a model. Mol. Plant-Microbe. Interact. 6: 238–252Google Scholar
  120. Stouthamer AH, Stam H, de Vries W & Van Verklen M (1988) Some aspects of nitrogen fixation in free-living cultures ofRhizobium. In: Bothe H, de Bruijn FJ & Newton WE (Eds) Nitrogen fixation: Hundred years after (pp 257–260). Gustav Fischer, Stuttgart.Google Scholar
  121. Szeto WW, Nixon BT, Ronson CW & Ausubel FM (1987) Identification and characterization of theRhizobium meliloti ntrC gene:Rhizobium meliloti has separate regulatory pathways for activation of nitrogen fixation genes in free-living and symbiotic cells. J. Bacteriol. 169: 1423–1432Google Scholar
  122. Szeto WW, Zimmerman JL, Sundaresan V & Ausubel FM (1984) ARhizobium meliloti symbiotic regulatory gene. Cell 36: 1035–1043Google Scholar
  123. Thöny B, Anthamatten D & Hennecke H (1989) Dual control of theBradyrhizobium japonicum symbiotic nitrogen fixation regulatory operonfixR nifA: Analysis ofcis- andtrans-acting elements. J. Bacteriol. 171: 4162–4169Google Scholar
  124. Thöny B, Fischer HM, Anthamatten D, Bruderer T & Hennecke H (1987) The symbiotic nitrogen fixation regulatory operon (fixRnifA) ofBradyrhizobium japonicum is expressed aerobically and is subject to a novel,nifA-independent type of activation. Nucl. Acids Res. 15: 8479–8499Google Scholar
  125. Thöny-Meyer L, Stax D & Hennecke H (1989) An unusual gene cluster for the cytochromebc 1 complex inBradyrhizobium japonicum and its requirement for effective root nodule symbiosis. Cell 57: 683–697Google Scholar
  126. Van Soom C, Browaeys J, Verreth C & Vanderleyden J (1993a) Nucleotide sequence analysis of four genes,hupC, hupD, hupF andhup G, downstream of the hydrogenase structural genes inBradyrhizobium japonicum. J. Mol. Biol. 234: 508–512Google Scholar
  127. Van Soom C, Verreth C, Sampaio MJ & Vanderleyden J (1993b) Identification of a potential transcriptional regulator of hydrogenase activity in free-livingBradyrhizobium japonicum strains. Mol. Gen. Genet. 239: 235–240Google Scholar
  128. Waelkens F, Foglia A, Morel JB, Fourment J, Batut J & Boistard P (1992) Molecular genetic analysis of theRhizobium meliloti fixK promoter: identification of sequences involved in positive and negative regulation. Mol. Microbiol. 6: 1447–1456Google Scholar
  129. Wallington EJ & Lund PA (1994)Rhizobium leguminosarum contains multiple chaperonin (cpn60) genes. Microbiology 140: 113–122Google Scholar
  130. Weiss DS, Batut J, Klose KE, Keener J & Kustu S (1991) The phosphorylated form of the enhancer-binding protein NTRC has an ATPase activity that is essential for activation of transcription. Cell 67: 155–167Google Scholar
  131. Witty JF & Minchin FR (1990) Oxygen diffusion in the legume root nodule. In: Gresshoff PM, Roth LE, Stacey G & Newton WE (Eds) Nitrogen fixation: achievements and objectives (pp 285–292). Chapman & Hall, New YorkGoogle Scholar
  132. Witty JF, Minchin FR, Skot L & Sheehy JE (1986) Nitrogen fixation and oxygen in legume root nodules. In: Oxford Surveys of Plant Molecular and Cell Biology, vol. 3 (pp 275–314). Oxford University Press, OxfordGoogle Scholar
  133. Young JPW (1992) Phylogenetic classification of nitrogen-fixing organisms. In: Evans H, Burris R & Stacey G (Eds) Biological Nitrogen Fixation (pp 43–86). Chapman & Hall, New-YorkGoogle Scholar
  134. Zimmerman JL, Szeto WW & Ausubel FM (1983) Molecular characterization of Tn5-induced symbiotic (Fix) mutants ofRhizobium meliloti. J. Bacteriol. 156: 1025–1034Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Jacques Batut
    • 1
  • Pierre Boistard
    • 1
  1. 1.Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, CNRS INRACastanet-Tolosan CedexFrance

Personalised recommendations