Antonie van Leeuwenhoek

, Volume 66, Issue 1–3, pp 47–56

Nitrate reductases inEscherichia coli

  • Violaine Bonnefoy
  • John A. Demoss
Research Articles

Abstract

Escherichia coli expresses two different membrane-bound respiratory nitrate reductases, nitrate reductase A (NRA) and nitrate reductase Z (NRZ). In this review, we compare the genetic control, biochemical properties and regulation of these two closely related enzyme systems. The two enzymes are encoded by distinct operons located within two different loci on theE. coli chromosome. ThenarGHJI operon, encoding nitrate reductaseA, is located in thechlC locus at 27 minutes, along with several functionally related genes:narK, encoding a nitrate/nitrite antiporter, and thenarXL operon, encoding a nitrate-activated, two component regulatory system. ThenarZYWV operon, encoding nitrate reductase Z, is located in thechlZ locus located at 32.5 minutes, a region which includes anarK homologue,narU, but no apparent homologue to thenarXL operon. The two membrane-bound enzymes have similar structures and biochemical properties and are capable of reducing nitrate using normal physiological substrates. The homology of the amino acid sequences of the peptides encoded by the two operons is extremely high but the intergenic regions share no related sequences. The expression of both thenarGHJI operon and thenarK gene are positively regulated by two transacting factors Fnr and NarL-Phosphate, activated respectively by anaerobiosis and nitrate, while thenarZYWV operon and thenarU gene are constitutively expressed. Nitrate reductase A, which accounts for 98% of the nitrate reductase activity when fully induced, is clearly the major respiratory nitrate reductase inE. coli while the physiological role of the constitutively expressed nitrate reductase Z remains to be defined.

Key words

Anaerobiosis Escherichia coli Fnr narL nitrate nitrate reductase 

Abbreviations

NR

nitrate reductase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Augier V, Guigliarelli B, Asso M, Bertrand P, Frieson C, Giordano G, Chippaux M & Blasco F (1993) Site-directed mutagenesis of conserved cysteine residues within the β subunit ofEscherichia coli nitrate reductase. Biochemistry 32: 2013–2023Google Scholar
  2. Bachmann BJ (1990) Linkage map ofEscherichia coli K12, edition 8 Microbiol. Rev. 54: 130–197Google Scholar
  3. Barrett EL & Riggs DL (1982) Evidence for a second nitrate reductase activity that is distinct from the respiratory enzyme inSalmonella typhimurium. J. Bacteriol. 150: 563–571Google Scholar
  4. Bell LC, Richardson DJ & Ferguson SJ (1990) Periplasmic and membrane-bound respiratory nitrate reductases inThiosphaera pantotropha. FEBS Lett 265: 85–87Google Scholar
  5. Blasco F, Iobbi C, Giordano G, Chippaux M & Bonnefoy V (1989) Nitrate reductase ofEscherichia coli: completion of the nucleotide sequence of thenar operon and reassessment of the role of the α and β subunits in iron binding and electron transfer. Mol. Gen. Genet. 218: 249–256Google Scholar
  6. Blasco F, Iobbi C, Ratouchniak J, Bonnefoy V & Chippaux M (1990) Nitrate reductases ofEscherichia coli: sequence of the second nitrate reductase and comparison with that encoded by thenarGHJI operon. Mol. Gen. Genet. 222: 104–111Google Scholar
  7. Blasco F, Nunzi F, Pommier J, Brasseur R, Chippaux M & Giordano G (1992a) Formation of active heterologous nitrate reductases between nitrate reductases A and Z ofEscherichia coli. Mol. Microbiol. 6: 209–219Google Scholar
  8. Blasco F, Pommier J, Augier V, Chippaux M & Giordano G (1992b) Involvement of thenarJ ornarW gene product in the formation of active nitrate reductase inEscherichia coli. Mol. Microbiol. 6: 221–230Google Scholar
  9. Bonnefoy V, Burini JF, Giordano G, Pascal MC & Chippaux M (1987) Presence in the ‘silent’ terminus region of theEscherichia coli K12 chromosome of cryptic gene(s) encoding a new nitrate reductase. Mol. Microbiol. 1: 143–150Google Scholar
  10. Bonnefoy V & DeMoss JA (1992) Identification of functionalcis-acting sequences involved in regulation ofnarK gene expression inEscherichia coli. Mol. Microbiol. 6: 3595–3602Google Scholar
  11. Bonnefoy V, Pascal MC, Ratouchniak J & Chippaux M (1986) Alteration by mutation of the control by oxygen of thenar operon inEscherichia coli. Mol. Gen. Genet. 205: 349–352Google Scholar
  12. Buck M, Miller S, Drummond M & Dixon R (1986) Upstream activator sequences are present in the promoter of nitrogen fixation genes. Nature 320: 374–378Google Scholar
  13. Busby S, Spassky A & Chan B (1987) RNA polymerase makes important contacts upstream from base pair −49 at theEscherichia coli galactose operonP1 promoter. Gene 53: 145–152Google Scholar
  14. Byrne MD & Nicholas DJD (1987) A membrane-bound dissimilatory nitrate reductase fromRhodobacter sphaeroides f. sp.denitrificans. Biochim. Biophys. Acta 915: 120–124Google Scholar
  15. Cali BM, Micca JL and Stewart V (1989) Genetic regulation of nitrate assimilation inKlebsiella pneumoniae M5al. J. Bacteriol. 171: 2666–2672Google Scholar
  16. Carlson CA, Ferguson LP & Ingraham JI (1982) Properties of dissimilatory nitrate reductase purified from the denitrifierPseudomonas aeruginosa. J. Bacteriol. 151: 162–171Google Scholar
  17. Chan B, Spassky A & Busby S (1990) The organization of open complexes betweenEscherichia coli RNA polymerase and DNA fragments carrying promoters either with or without −35 region sequences. Biochem. J. 270: 141–148Google Scholar
  18. Chaudhry G & MacGregor C (1983)Escherichia coli nitrate reductase subunit A: its role as the catalytic site and evidence for its modification. J. Bacteriol. 154: 387–394Google Scholar
  19. Chippaux M, Bonnefoy-Orth V, Ratouchniak & Pascal MC (1981) Operon fusions in the nitrate reductase operon and study of the control genenirR inEscherichia coli. Mol. Gen. Genet. 182: 477–479.Google Scholar
  20. Craske A & Ferguson SJ (1986) The respiratory nitrate reductase fromParacoccus denitrificans. Molecular characterisation and kinetic properties. Eur. J. Biochem. 158: 429–436.Google Scholar
  21. DeMoss JA. & Hsu PY (1991) NarK enhances nitrate uptake and nitrite excretion inEscherichia coli. J. Bacteriol. 173: 3303–3310Google Scholar
  22. Dong XR, Li SF & DeMoss JA (1992) Upstream sequence elements required for NarL-mediated activation of transcription from thenarGHJI promoter ofEscherichia coli. J. Biol. Chem. 267: 14122–14128Google Scholar
  23. Dubourdieu M & DeMoss J (1992) ThenarJ gene product is required for biogenesis of respiratory nitrate reductase inEscherichia coli. J. Bacteriol. 174: 867–872Google Scholar
  24. Egan SE & Stewart V (1990) Nitrate regulation of anaerobic respiratory gene expression innarX deletion mutants ofEscherichia coli K12. J. Bacteriol. 172: 5020–5029Google Scholar
  25. Enoch H & Lester R (1975) The purification and properties of formate dehydrogenase and nitrate reductase fromEscherichia coli. J. Biol. Chem. 250: 6693–6705Google Scholar
  26. Esposti MD (1989) Prediction and comparison of the haem-binding sites in membrane haemoproteins. Biochim. Biophys. Acta 977: 249–265Google Scholar
  27. Fimmel AL & Haddock BA (1979) Use ofchlC-lac fusions to determine regulation of genechlC inEscherichia coli K12. J. Bacteriol. 138: 726–730Google Scholar
  28. Freundlich M, Ramani N, Mathew E, Sirko A & Tsui P (1992) The role of integration host factor in gene expression inEscherichia coli. Mol. Microbiol. 6: 2557–2563Google Scholar
  29. Garland P, Downie J & Haddock B (1975) Proton translocation and the respiratory nitrate reductase ofEscherichia coli. Biochem. J. 152: 547–559Google Scholar
  30. Gilson E, Clement JM, Brutlag D & Hofnung M (1984) A family of dispersed repetitive extragenic palindromic DNA sequences inE. coli. EMBO J. 3: 1417–1421.Google Scholar
  31. Guest JR (1992) Oxygen-regulated gene expression inEscherichia coli. J. Gen. Microbiol. 138: 2253–2263Google Scholar
  32. Hill TM (1992) Arrest of bacterial DNA replication. Ann. Rev. Microbiol. 46: 603–633Google Scholar
  33. Hulton CSJ, Higgins CF & Sharp PM (1991) ERIC sequences: a novel family of repetitive elements in the genomes ofEscherichia coli, Salmonella typhimurium and other enterobacteria. Mol. Microbiol. 5: 825–834Google Scholar
  34. Iobbi C, Santini CL, Bonnefoy V & Giordano G (1987) Biochemical and immunological evidence for a second nitrate reductase inEscherichia coli K12. Eur. J. Biochem. 168: 451–459Google Scholar
  35. Iobbi-Nivol C, Santini C, Blasco F & Giordano G (1990) Purification and further characterization of the second nitrate reductase ofEscherichia coli K-12. Eur. J. Biochem. 188: 679–687Google Scholar
  36. Jeter RM, Sias SR & Ingraham JL (1984) Chromosomal location and function of genes affectingPseudomonas aeruginosa nitrate assimilation. J. Bacteriol. 157: 673–677Google Scholar
  37. Johnson M, Bennett D, Morningstar J, Adams M & Mortenson L (1985) The iron-sulfur cluster composition ofEscherichia coli nitrate reductase. J. Biol. Chem. 260: 5456–5463Google Scholar
  38. Kohara Y, Akiyama K & Isono K (1987) The physical map of the wholeE. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 50: 495–508Google Scholar
  39. Kolesnikow T, Schröder I & Gunsalus RP (1992) Regulation ofnarK gene expression inEscherichia coli in response to anaerobiosis, nitrate, iron and molybdenum. J. Bacteriol. 174: 7104–7111Google Scholar
  40. Lazazzera BA, Bates DM & Kiley PJ (1993) The activity of theEscherichia coli transcription factor Fnr is regulated by a change in oligomeric state. Genes & Development 7: 1993–2005Google Scholar
  41. Li SF & DeMoss JA (1987) Promoter region of thenar operon ofEscherichia coli: nucleotide sequence and transcription initiation signals. J. Bacteriol. 169: 4614–4620Google Scholar
  42. Lin JT, Goldman BS & Stewart V (1993) Structures of genesnasA andnasB, encoding assimilatory nitrate and nitrite reductases inKlebsiella pneumoniae M5al. J. Bacteriol. 175: 2370–2378Google Scholar
  43. Lombardo MJ, Bagga D & Miller CG (1991) Mutations inrpoA affect expression of anaerobically regulated genes inSalmonella typhimurium. J. Bacteriol. 173: 7511–7518Google Scholar
  44. Lund K & DeMoss J (1976) Association-dissociation behavior and subunit structure of heat-released nitrate reductase fromEscherichia coli. J. Biol. Chem. 251: 2207–2216Google Scholar
  45. McEwan AG, Jackson JB & Ferguson SJ (1984) Rationalization of properties of nitrate reductases inRhodopseudomonas capsulata. Arch. Microbiol. 137: 344–349Google Scholar
  46. McEwan AG, Wetzstein HG, Meyer O, Jackson JB & Ferguson SJ (1987) The periplasmic nitrate reductase ofRhodobacter capsulatus; purification, characterisation and distinction from a single reductase for trimethylamine-N-oxide, dimethylsulphoxide and chlorate. Arch. Microbiol. 147: 340–345Google Scholar
  47. McGregor C (1975) Anaerobic cytochromeb 1 inEscherichia coli: association with and regulation of nitrate reductase. J. Bacteriol. 121: 1111–1116Google Scholar
  48. McGregor C, Schnaitman C, Normansell D & Hodgins M (1974) Purification and properties of nitrate reductase fromEscherichia coli K-12. J. Biol. Chem. 249: 5321–5327Google Scholar
  49. Michalski WP & Nicholas DJD (1984) The adaptation ofRhodopseudomonas sphaeroides f. sp.denitrificans for growth under denitrifying conditions. J. Gen. Microbiol. 130: 155–165Google Scholar
  50. Morpeth FF & Boxer DH (1985) Kinetic analysis of respiratory nitrate reductase fromEscherichia coli K12. Biochemistry 24: 40–46Google Scholar
  51. Nohno TS, Noji S, Taniguchi S & Saito T (1989) ThenarX and thenarL genes encoding the nitrate-sensing regulators ofEscherichia coli are homologous to a family of prokaryotic two-component regulatory genes. Nucleic Acids Res. 17: 2947–2957Google Scholar
  52. Noji S, Nohno T, Saito T & Taniguchi S (1989) ThenarK gene product participates in nitrate transport induced inEscherichia coli nitrate-respiring cells. FEBS Lett. 252: 139–143Google Scholar
  53. Pichinoty F (1966) Propriétés, régulation & fonctions physiologiques des nitrates réductases bactériennes A & B. Bull. Soc. Fr. Physiol. Veg. 12: 97–106Google Scholar
  54. Rabin RS, Collins LA & Stewart V (1992)In vivo requirement of integration host factor fornar (nitrate reductase) operon expression inEscherichia coli K12. Proc. Natl. Acad. Sci. USA 89: 8701–8705Google Scholar
  55. Rabin RS & Stewart V (1993) Dual response (NarL and NarP) interact with dual sensors (NarX and NarQ) to control nitrate-and nitrite-regulated gene expression inEscherichia coli K12. J. Bacteriol. 175: 3259–3268.Google Scholar
  56. Richarson DJ & Ferguson SJ (1992) The influence of carbon substrate on the activity of the periplasmic nitrate reductase in aerobically grownThiosphaera pantotropha. Arch. Microbiol. 157: 535–537Google Scholar
  57. Richardson DJ, McEwan AG, Page MD, Jackson JB & Ferguson SJ (1990) The identification of cytochromes involved in the transfer of electrons to the periplasmic NO3 reductase ofRhodobacter capsulatus and resolution of a soluble NO3 -reductase-cytochrome-c 552 redox complex. Eur. J. Biochem. 194: 263–270Google Scholar
  58. Robertson LA & Kuenen JG (1984) Aerobic denitrification: a controversy revived. Arch. Microbiol. 139: 351–354Google Scholar
  59. Sabaty M (1993) Régulation de la dénitrification chezRhodobacter sphaeroides f. sp.denitrificans: synthèse protéique & transfert d'électrons. Thèse d'université. Biologie cellulaire & microbiologie. Aix-Marseille IIGoogle Scholar
  60. Sabaty M, Gagnon J & Vermeglio A (1994) Induction by nitrate and nitrous oxide of cytoplasmic and periplasmic proteins in the photodenitrifierRhodobacter sphaeroides forma sp.denitrificans in anaerobic or aerobic conditions. Eur. J. Biochem. in pressGoogle Scholar
  61. Sawada E & Satoh T (1980) Periplasmic location of dissimilatory nitrate and nitrite reductase in a denitrifying phototrophic bacterium,Rhodobacter sphaeroides forma sp.denitrificans. Plant Cell Physiol. 21: 205–210Google Scholar
  62. Schröder I, Darie S & Gunsalus RP (1993) Activation of theEscherichia coli nitrate reductase (narGHJI) operon by NarL and Fnr requires integration host factor. J. Biol. Chem. 268: 771–774Google Scholar
  63. Sears HJ, Ferguson SJ, Richardson DJ & Spiro S (1993) The identification of a periplasmic nitrate reductase inParacoccus denitrificans. FEMS Microbiol. Lett. 113: 107–112Google Scholar
  64. Showe MK & DeMoss JA (1968) Localization and regulation of synthesis of nitrate reductase inEscherichia coli. J. Bacteriol. 95: 1305–1313Google Scholar
  65. Sias SR, Stouthamer AH & Ingraham (1980) The assimilatory and dissimilatory nitrate reductases ofPseudomonas aeruginosa are encoded by different genes. J. Gen. Microbiol. 118: 229–234Google Scholar
  66. Siddiqui RA, Warnecke U, Hengsberger A, Schneider B, Kostka S & Friedrich B (1993) Structure and function of a periplasmic nitrate reductase inAlcaligenes eutrophus H16. J. Bacteriol. 175: 5867–5876Google Scholar
  67. Sodergren E & DeMoss J (1988)narI region of theEscherichia coli nitrate reductase (nar) operon cotains two genes. J. Bacteriol.170: 1721–1729Google Scholar
  68. Sodergren EJ, Hsu PY & DeMoss JA (1988) Roles of thenarJ andnarI gene products in the expression of nitrate reductase inEscherichia coli. J. Biol. Chem. 263: 16156–16162Google Scholar
  69. Stern MJ, Ferro-Luzzi Ames G, Smith NH, Robinson EC & Higgins CF (1984) Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell 37: 1015–1026Google Scholar
  70. Stewart V (1982) Requirement of Fnr and NarL functions for nitrate reductase expression inEscherichia coli K-12. J. Bacteriol. 151: 1320–1325Google Scholar
  71. Stewart V (1988) Nitrate respiration in relation to facultative metabolism in Enterobacteria. Microbiol. Rev. 52: 190–232Google Scholar
  72. Stewart V. (1993) Nitrate regulation of anaerobic respiratory gene expression inEscherichia coli. Mol. Microbiol. 9: 425–434Google Scholar
  73. Stewart V & Parales J Jr (1988) Identification and expression of genesnarL andnarX of thenar (nitrate reductase) locus in Escherichia coli K-12. J. Bacteriol. 170: 1589–1597Google Scholar
  74. Walker S & DeMoss JA (1991) Promoter sequence requirements for Fnr-dependent activation of transcription of thenarGHJI operon. Mol. Microbiol. 5: 353–360Google Scholar
  75. Walker S & DeMoss JA (1992) Role of alternative promoter elements in transcription from thenar promoter ofEscherichia coli. J. Bacteriol. 174: 1119–1123Google Scholar
  76. Walker S & DeMoss JA (1993) Phosphorylation and dephosphorylation catalysedin vitro by purified components of the nitrate sensing system, NarX and NarL. J. Biol. Chem. 268: 8391–8393Google Scholar
  77. Warnecke-Eberz U & Friedrich B (1993) Three nitrate reductase activities inAlcaligenes eutrophus. Arch. Microbiol. 159: 405–409Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Violaine Bonnefoy
    • 1
  • John A. Demoss
    • 1
  1. 1.Laboratoire de Chimie BactérienneCNRSMarseilleFrance

Personalised recommendations