Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Diffusion in an inhomogeneous velocity field in the presence of a first-order homogeneous chemical reaction

  • 19 Accesses

Abstract

Upon taking the average of the local transport equation with a homogeneous first-order chemical reaction, a differential equation is obtained for the mean concentration over the channel section in the form of an infinite asymptotic series. Estimates are executed showing that we can limit ourselves to terms of third order or even second order for not-too-high reaction rates in the averaged transport equation; however, additional connective and source-like terms appear here in the equations. The theory is confirmed by an experiment in a 3.4-m operating chemical reactor.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    G. Taylor, Proc. R. Soc., Ser. A,219, 186–203 (1953).

  2. 2.

    G. Taylor, Proc. R. Soc., Ser. A,223, 446–468 (1954).

  3. 3.

    G. Taylor, Proc. R. Soc., Ser. A,225, 473–477 (1954).

  4. 4.

    D. A. G. Bruggerman, Ann. Phys.,5, No. 24, 637–664 (1935).

  5. 5.

    V. I. Odelevskii, Zh. Tekh. Fiz.,21, No. 6, 667–685 (1951).

  6. 6.

    R. Landauer, J. Appl. Phys.,23, No. 7, 779–784 (1952).

  7. 7.

    Theory and Properties of Disordered Materials [in Russian], Moscow (1977).

  8. 8.

    Yu. K. Buevich and S. L. Komarinskii, Inzh.-Fiz. Zh.,53, No. 3, 389–398 (1987).

  9. 9.

    Yu. K. Buevich, A. Yu. Zubarev, and S. L. Komarinskii, Inzh.-Fiz. Zh.,53, No. 2, 211–217 (1987).

  10. 10.

    L. N. Koltunova, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 122–128 (1989).

  11. 11.

    V. V. Zhikov, S. M. Kozlov, and O. A. Oleinik, Usp. Mat. Nauk.,36, No. 1, 11–58 (1981).

  12. 12.

    V. V. Zhikov, S. M. Kozlov, and O. A. Oleinik, Dokl. Akad. Nauk SSSR,260, No. 3, 521–525 (1981).

  13. 13.

    A. S. Monin and A. M. Yaglom, Statistical Hydromechanics [in Russian], Pt. 1, Moscow (1967).

  14. 14.

    F. Krause and K. K. Radler, Magnetic Hydrodynamics of Mean Fields and Theory of the Dynamo [Russian translation], Moscow (1980).

  15. 15.

    M. I. Shvidler, Statistical Hydrodynamics of Porous Media [in Russian], Moscow (1985).

  16. 16.

    C. W. Gear, Commun. ACM,14, 176–189 (1971).

Download references

Author information

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 60, No. 1, pp. 77–88, January, 1991.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koltunoya, L.N. Diffusion in an inhomogeneous velocity field in the presence of a first-order homogeneous chemical reaction. Journal of Engineering Physics 60, 65–74 (1991). https://doi.org/10.1007/BF00871614

Download citation

Keywords

  • Differential Equation
  • Statistical Physic
  • Velocity Field
  • Transport Equation
  • Chemical Reactor