Journal of engineering physics

, Volume 50, Issue 5, pp 518–526 | Cite as

Time-of-flight mass-spectrometer with dust-impact ion source

  • S. B. Zhitenev
  • N. A. Inogamov
  • A. B. Konstantinov


The processes occurring in a dust-impact mass analyzer, the ion source in which a plasmoid is formed in the impact of a high-velocity dust particle on the anode of the device, are studied.


Dust Statistical Physic Dust Particle Mass Analyzer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. V. Lebedev and R. S. Churaev, “Ion-optical calculation of time-of-flight mass spectrometer,” Preprint No. Pr-750, IKI, Academy of Sciences of the USSR (1982).Google Scholar
  2. 2.
    H. Fechtig, “Scientific objectivities of dust experiments on cometary fly-by missions in cometary exploration,” in: Proceedings of the International Conference on Cometary Exploration, Budapest (1982), Vol. 2, p. 203.Google Scholar
  3. 3.
    P. K. D. Feigl, F. R. Krueger, and B. Schueler, “A simple technique of ion generation from organic solids by ultrashort electric pulses,” Org. Mass Spectrosc.,18, No. 10, 442–443 (1983).Google Scholar
  4. 4.
    N. A. Inogamov, “Electrostatic screening by self-consistent volume charge and ion dynamics in a time-of-flight mass-spectrometer with a dust-impact ion source,” Preprint Pr-950, IKI, Academy of Sciences of the USSR (1984).Google Scholar
  5. 5.
    H. Fechtig, H. Grün, and J. Kissel, “Laboratory simulation,” in: Cosmic Dust, J. A. McDonnell (ed.), Wiley, New York (1978).Google Scholar
  6. 6.
    W. Knabe and F. R. Krueger, “Ion formation from alkali iodine solids by swift dust particle impact,” Z. Naturforsch.,37a, No. 12, 1335–1340 (1982).Google Scholar
  7. 7.
    B. M. Manzon, “Acceleration of microparticles for controlled thermonuclear fusion,” Usp. Fiz. Nauk,134, No. 4, 611–640 (1983).Google Scholar
  8. 8.
    J. F. Friichtemicht and D. G. Becker, “Measurements of the ionization probability of Cu and LaB6 simulated micrometeors,” Astrophys. J.,166, No. 3, Pt. 1, 717–724 (1971).Google Scholar
  9. 9.
    J. M. Greenberg, “Laboratory dust experiments — Tracing the composition of cometary dust,” in: Proceedings of the International Conference on Cometary Exploration, Vol. 2, Budapest (1982), p. 23.Google Scholar
  10. 10.
    S. Drapatz and K. W. Michel, “Theory of shock-wave ionization upon high-velocity impact of micrometeorites,” Z. Naturforsch.,29a, 870 (1974).Google Scholar
  11. 11.
    Yu. G. Malama, “Numerical modeling of ionization phenomena in a high-velocity collision,” Preprint Pr-725, IKI, Academy of Sciences of the USSR (1982).Google Scholar
  12. 12.
    A. V. Bushman and V. E. Fortov, “Models of the equation of state of materials,” Usp. Fiz. Nauk,140, No. 2, 177–232 (1983).Google Scholar
  13. 13.
    O. M. Belotserkovskii and Yu. M. Davydov, “Nonstationary method of ‘large particles’ for gasdynamic calculations,” Zh. Vychisl. Mat. Mat. Fiz.,11, No. 1, 182–207 (1971).Google Scholar
  14. 14.
    M. W. Evans and F. H. Harlow, “The particle-in-cell method for hydrodynamic calculations,” Rept. No. LA-2139, Los Alamos Scientific Laboratory (1957).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • S. B. Zhitenev
    • 1
    • 2
  • N. A. Inogamov
    • 1
    • 2
  • A. B. Konstantinov
    • 1
    • 2
  1. 1.L. D. Landau Institute of Theoretical PhysicsAcademy of Sciences of the USSRMoscow
  2. 2.Institute of Solid-State PhysicsAcademy of Sciences of the USSRChernogolovka

Personalised recommendations