Advertisement

Journal of Neurology

, Volume 243, Issue 3, pp 241–247 | Cite as

Prognostic significance of metabolic changes detected by proton magnetic resonance spectroscopy in ischaemic stroke

  • Francesco Federico
  • Isabella Laura Simone
  • Cosimo Conte
  • Vincenzo Lucivero
  • Paolo Giannini
  • Maria Liguori
  • Emilia Picciola
  • Carla Tortorella
Original Communication

Abstract

Proton magnetic resonance spectroscopy has proved to be useful for monitoring a number of metabolites in cerebral infarction. Combined magnetic resonance imaging and spectroscopy investigations were carried out in 14 patients with a recent ischaemic stroke (< 1 week); follow-up examinations were performed from day 28 to day 252 after stroke. The aim of this study was to assess the correlation between the changes ofN-acetyl-aspartate, choline, creatine-phosphocreatine, lactate and clinical evolution measured by the Scandinavian Neurological Scale (SNS). Initially the lactate magnetic resonance signal was present in all patients and the other metabolite contents were significantly reduced (P < 0.001; unpairedt-test) as compared with those on the contralateral side. Spearman's rank correlation test showed a positive correlation between the initial reduction ofN-acetyl-aspartate content and the SNS (P < 0.05), and between the finalN-acetyl-aspartate content and the SNS (P < 0.001). Our results suggest that serial examination in stroke patients may provide further prognostic information and encourage controlled clinical studies.

Key words

Cerebral infarction Magnetic resonance imaging Spectroscopy Metabolism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berkelbach van der Sprenkel JW, Luyten PR, Rijen PC van, Tulleken CAF, Hollander JA den (1988) Cerebral lactate detected by regional proton magnetic resonance spectroscopy in a patient with cerebral infarction. Stroke 19:1556–1560PubMedGoogle Scholar
  2. 2.
    Bryan RN, Levy LM, Writlow WD, Kilian JM, Preziosi TJ, Rosario JA (1991) Diagnosis of acute cerebral infarction: comparison of CT and MR imaging. AJNR 12:611–620PubMedGoogle Scholar
  3. 3.
    Davie CA, Hawkins CP, Barker GJ, Brennan A, Tofts PS, Miller DH, McDonald WI (1994) Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain 117:49–58PubMedGoogle Scholar
  4. 4.
    De Haan R, Horn J, Limburg M, Van Der Meulen J, Bossuyt P (1993) A comparison of five stroke scales with measures of disability, handicap and quality of life. Stroke 24:1178–1181PubMedGoogle Scholar
  5. 5.
    Duijn JH, Matson GB, Maudsley AA, Hugg JW, Weiner MW (1992) Human brain infarction: proton MR spectroscopy. Radiology 183:711–718PubMedGoogle Scholar
  6. 6.
    Federico F, Conte C, Simone IL, Giannini P, Liguori M, Picciola E, Tortorella C, Ferrari E (1994) Proton magnetic resonance spectroscopy in patients with ischemic stroke. Ital J Neurol Sci 15:413–420PubMedGoogle Scholar
  7. 7.
    Felber SR, Aichner FT, Sauter R, Gerstenbrand F (1992) Combined magnetic resonance imaging and proton magnetic resonance spectroscopy of patients with acute stroke. Stroke 23:1106–1110PubMedGoogle Scholar
  8. 8.
    Fenstermacher MJ, Narayana PA (1990) Serial proton magnetic resonance spectroscopy of ischemic brain injury in humans. Invest Radiol 25:1034–1039PubMedGoogle Scholar
  9. 9.
    Fisher M, Sotak CH, Minematsu K, Li L (1992) New magnetic resonance techniques for evaluating cerebrovascular disease. Ann Neurol 32:115–122PubMedGoogle Scholar
  10. 10.
    Ford CC, Griffey RH, Matwyoff NA, Rosenberg GA (1992) Multivoxel1H-MRS of stroke. Neurology 42:1408–1412PubMedGoogle Scholar
  11. 11.
    Frahm J, Merboldt KD, Hanicke W (1987) Localized proton spectroscopy using stimulated echoes: initial applications. J Magn Reson 72:502–508Google Scholar
  12. 12.
    Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hanicke W, Sauter R (1989) Localizated high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med 9:79–93PubMedGoogle Scholar
  13. 13.
    Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hanicke W, Sauter R (1989) Localized H-NMR spectroscopy in different regions of the human brain in vivo: relaxation times and concentrations of cerebral metabolites. Magn Reson Med 11:47–63PubMedGoogle Scholar
  14. 14.
    Frahm J, Michaelis T, Merboldt KD, Hanicke W, Gyngell ML, Bruhn H (1991) On theN-Acetyl methyl resonance in localized1 H-NMR spectra of human brain in vivo. NMR Biomed 4:201–204PubMedGoogle Scholar
  15. 15.
    Gideon P, Henriksen O, Sperling B, Christiansen P, Olsen TS, Jorgensen HS, Arlien-Soborg P (1992) Early time course ofN-Acetyl-Aspartate, Creative and Phosphocreatine, and compounds containing Choline in the brain after acute stroke. A proton magnetic resonance spectroscopy study. Stroke 23:1566–1572PubMedGoogle Scholar
  16. 16.
    Gideon P, Sperling B, Arlien-Soborg P, Olsen TS, Henriksen O (1994) Long-term follow up of cerebral infarctions patients with proton magnetic resonance spectrocopy. Stroke 25:867–973Google Scholar
  17. 17.
    Graham GD, Blamire AM, Howseman AM, Rothman DL, Fayad PB, Brass LM, Petroff OAC, Shulman RG, Prichard JW (1992) Proton magnetic resonance spectroscopy of cerebral lactate and other metabolites in stroke patients. Stroke 23:333–340PubMedGoogle Scholar
  18. 18.
    Graham GD, Blamire AM, Rothman DL, Brass LM, Fayad PB, Petroff OAC, Prichard JW (1993) Temporal variation of cerebral metabolites after human stroke. A proton magnetic resonance spectroscopy study. Stroke 24:1891–1896PubMedGoogle Scholar
  19. 19.
    Graham GD, Kalvach P, Blamire A, Brass LM, Fayad PB, Prichard JW (1995) Clinical correlates of proton magnetic resonance spectroscopy findings after acute cerebral infarctions. Stroke 26:225–229PubMedGoogle Scholar
  20. 20.
    Houkin K, Kamada K, Kamiyama H, Iwasaki Y, Abe H, Kashiwaba T (1993) Longitudinal changes in proton magnetic resonance spectroscopy in cerebral infarction. Stroke 24:1316–1321PubMedGoogle Scholar
  21. 21.
    Hugg JW, Duijn JH, Matson GB, Maudsley AA, Tsuruda JS, Gelinas DF, Weiner MW (1992) Elevated lactate and alkalosis in chronic human brain infarction observed by H and P MR spectroscopy imaging. J Cereb Blood Flow Metabol 12:734–744Google Scholar
  22. 22.
    Koller KJ, Zaczek R, Coyle JT (1984)N-acetyl-aspartyl-glutamate: regional levels in rate brain and the effects of brain lesions as determined by a new HPLC method. J Neurochem 43:1136–1142PubMedGoogle Scholar
  23. 23.
    Michaelis T, Merboldt KD, Hanicke W, Gyngell M, Bruhn H, Frahm J (1991) On the identification of cerebral metabolites in localized1H-NMR spectra of human brain in vivo. NMR Biomed 4:90–98PubMedGoogle Scholar
  24. 24.
    Miller BL (1991) A review of chemical issues in1H-NMR spectroscopy:N-Acetyl-L-Aspartate, Creatine and Choline. NMR Biomed 4:47–52Google Scholar
  25. 25.
    Nadler JV, Cooper JR (1972)N-Acetyl-L-Aspartic acid content of human neural tumours and bovine peripheral nervous tissues. J Neurochem 19:213–219Google Scholar
  26. 26.
    Narayana PA, Fotedar LK, Jackson EF, Bohan TP, Butler IL, Wolinski JS (1989) Regional in vivo proton magnetic resonance spectroscopy of brain. J Magn Reson 83:44–52Google Scholar
  27. 27.
    Scandinavian Stroke Study Group (1985) Multicentre trial of hemodilution in ischemic stroke. Background and study protocol. Stroke 16:885–890Google Scholar
  28. 28.
    Veech RL (1991) The metabolism of lactate. NMR Biomed 4:53–58PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Francesco Federico
    • 1
  • Isabella Laura Simone
    • 1
  • Cosimo Conte
    • 1
  • Vincenzo Lucivero
    • 1
  • Paolo Giannini
    • 1
  • Maria Liguori
    • 1
  • Emilia Picciola
    • 1
  • Carla Tortorella
    • 1
  1. 1.Piazza Giulio CesareInstitute of NeurologyBariItaly

Personalised recommendations