Theoretical and Applied Climatology

, Volume 57, Issue 1–2, pp 11–33

Climatology of cloud and radiation fields in a numerical weather prediction model

  • R. I. Cullather
  • Harshvardhan
  • K. A. Campana
Article

Summary

Satellite-derived datasets are used to verify the cloud cover and radiation field generated by a T62 (horizontal resolution) version of the operational global model at the National Meteorological Centre (NMC). An ensemble of five day forecasts for July 1985 is used, as well as 30 day climatological forecasts for July 1985, October 1985, January 1986, and April 1986.

Monthly averages of radiation fields are compared with Earth Radiation Budget Experiment (ERBE) data. For the four months examined, clear-sky outgoing longwave radiation (clear-sky OLR) and absorbed shortwave radiation (clear-sky SW) tend to agree roughly with ERBE. Model global mean OLR, however, exceeds that of ERBE by 10 W m−2.

Comparison of effective cloud cover to corresponding fields cataloged by the International Satellite Cloud Climatology Project (ISCCP C1) reveals deficiencies in the amount of supersaturation cloudiness and the vertical distribution of convective clouds. Large inaccuracies in model radiation fields are closely related to deficiencies in the cloud parameterization. An inventory of model cloudiness, in comparison to satellite data, is conducted.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, T. P., Liou, K.-N., Valero, F. P. J., Pfister, L., 1988: Heating rates in tropical anvils.J. Atmos. Sci. 45, 1606–1623.Google Scholar
  2. Anthes, R. A., 1977: A cumulus parameterization scheme utilizing a one dimensional cloud model.Mon. Wea. Rev. 105, 270–286.Google Scholar
  3. Barkstrom, B. R., 1984: The Earth Radiation Budget Experiment (ERBE).Bull. Amer. Meteor. Soc. 65, 1170–1185.Google Scholar
  4. Buriez, J.-C., Bonnel, B., Fouquart, Y., Geleyn, J.-F., Morcrette, J.-J., 1988: Comparison of model-generated and satellite-derived cloud cover and radiation budget.J. Geophys. Res. 93, 3705–3719.Google Scholar
  5. Campana, K. A., 1990: Radiation and cloud parameterization at the National Meteorological Center.Workshop on Clouds, Radiative Transfer, and the Hydrologic Cycle, November 1990, ECMWF, Reading, 313–339.Google Scholar
  6. Campana, K. A., Hou, Y.-T., Mitchell, K. E., Yang, S.-K., Cullather, R. I., 1994: Improved diagnostic cloud parameterization in NMC's global model.Proc. Tenth Conf. on Numerical Weather Prediction, Portland, 324–325.Google Scholar
  7. Caplan, P. M., 1988: Precipitation and Diffusion Processes. Documentation of the research version of the NMC Medium Range Forecast Model. [Available from NOAA/NMC, Development Division, Washington, DC 20233].Google Scholar
  8. Caplan, P. M., White, G. H., 1989: Performance of the National Meteorological Center's medium-range model.Wea. Forecasting 4, 391–400.Google Scholar
  9. Cess, R. D., Potter, G. L., 1987: Exploratory studies of cloud radiative forcing with a general circulation model.Tellus 39A, 460–473.Google Scholar
  10. Cess, R. D., Potter, G. L., Gates, W. L., Morcrette, J.-J., Corsetti, L., 1992: Comparison of general circulation models to Earth Radiation Budget Experiment data: Computation of clear-sky fluxes.J. Geophys. Res. 97, 20, 421–20, 426.Google Scholar
  11. Daley, R., 1991:Atmospheric Data Analysis. Cambridge: Cambridge University Press, pp. 391–394.Google Scholar
  12. Fels, S. B., Schwarzkopf, M. D., 1975: The simplified exchange approximation: a new method for radiative transfer calculations.J. Atmos. Sci. 32, 1475–1488.Google Scholar
  13. Geleyn, J.-F., 1981: Some diagnostics of the cloud/radiation interaction in the ECMWF forecasting model.Workshop on Radiation and Cloud-Radiation Interaction in Numerical Modeling, Reading, England, ECMWF, 135–162.Google Scholar
  14. Harrison, E. F., Minnis, P., Barkstrom, B. R., Ramanathan, V., Cess, R. D., Gibson, G. G., 1990: Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment.J. Geophys. Res. 95, 18,687–18,703.Google Scholar
  15. Harshvardhan, Davies, R., Randall, D. A., Corsetti, T. G., 1987: A fast radiation parameterization for atmospheric circulation models.J. Geophys. Res. 92, 1009–1016.Google Scholar
  16. Harshvardhan, Randall, D. A., Corsetti, T. G., Dazlich, D. A., 1989: Earth radiation budget and cloudiness simulations with a general circulation model.J. Atmos. Sci. 46, 1922–1942.Google Scholar
  17. Hou, Y.-T., Campana, K. A., Mitchell, K. E., Yang, S. K., Stowe, L. L., 1993: Comparison of an experimental NOAA AVHRR cloud dataset with other observed and forecast cloud datasets.J. Atmos. Oceanic Technol. 10, 833–849.Google Scholar
  18. Gates, W. L., 1992: AMIP: The atmospheric model intercomparison project.Bull. Amer. Meteor. Soc. 73, 1962–1970.Google Scholar
  19. Kalnay, E., Jenne, R., 1991: Summary of the NMC/NCAR reanalysis workshop of April 1991.Bull. Amer. Meteor. Soc. 72, 1897–1904.Google Scholar
  20. Kalnay, E., Petersen, R., Kanamitsu, M., Baker, W. E., 1991: U.S. operational numerical weather prediction.Rev. Geophys. [Suppl.], April 1991, 104–114.Google Scholar
  21. Kanamitsu, M., 1989: Description of the NMC global data assimilation and forecast system.Wea. Forecasting 4, 336–342.Google Scholar
  22. Kanamitsu, M., Alpert, J. C., Campana, K. A., Caplan, P. M., Deaven, D. G., Iredell, M., Katz, B., Pan, H.-L., Sela, J., White, G. H., 1991: NMC Notes: Recent changes implemented into the global forecast system at NMC.Wea. Forecasting 6, 425–435.Google Scholar
  23. Kiehl, J. T., Ramanathan, V., 1990: Comparison of cloud forcing derived from the Earth Radiation Budget Experiment with that simulated by the NCAR Community Climate Model.J. Geophys. Res. 95, 11,679–11,698.Google Scholar
  24. Krishnamurti, T. N., Bedi, H. S., Heckley, W., Ingles, K., 1988: Reduction of the spinup time for evaporation and precipitation in a spectral model.Mon. Wea. Rev. 116, 907–920.Google Scholar
  25. Kuo, H. L., 1965: On formation and intensification of tropical cyclones through latent heat release by cumulus convection.J. Atmos. Sci. 22, 40–63.Google Scholar
  26. Kuo, H. L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-sclae flow.J. Atmos. Sci. 31, 1232–1240.Google Scholar
  27. Lacis, A. A., Hansen, J. E., 1974: A parameterization for the absorption of solar radiation in the Earth's atmosphere.J. Atmos. Sci. 31, 118–133.CrossRefGoogle Scholar
  28. Matthews, E., 1985: Atlas of archived vegetation, land use, and seasonal albedo data sets. NASA Technical Memorandum 86 199, Goddard Institute for Space Studies, New York.Google Scholar
  29. Mokhov, I. I., Schlesinger, M. E., 1993: Analysis of global cloudiness 1: Comparison of Meteor, Nimbus 7, and International Satellite Cloud Climatology Project (ISCCP) satellite data.J. Geophys. Res. 98, 12,849–12,868.Google Scholar
  30. Payne, R. E., 1972: Albedo of the sea surface.J. Atmos. Sci. 29, 959–970.Google Scholar
  31. Potter, G. L., Slingo, J. M., Morcrette, J.-J., Corsetti, L., 1992: A modeling perspective on cloud radiative forcing.J. Geophys. Res. 97, 20,507–20,518.Google Scholar
  32. Ramsey, P. G., 1993: Radiative cooling profiles calculated from ECMWF analyses and ISCCP C1 data, and their application to determination of distribution ofQ 1-Q R in the equatorical Pacific. Ph.D. Dissertation, Purdue University.Google Scholar
  33. Rossow, W. B., Garder, L. C., Lu, P.-J., Walker, A., 1988: International Satellite Cloud Climatology Project (ISCCP) Documentation of Cloud Data. WMO/TD-No. 266, World Meteorological Organization, Geneva, 78 pp. plus two appendices.Google Scholar
  34. Rossow, W. B., Schiffer, R. A., 1991: ISCCP cloud data products.Bull. Amer. Meteor. Soc. 72, 2–20.Google Scholar
  35. Rossow, W. B., Garder, L. C., 1993a: Cloud detection using satellite measurements of infrared and visible radiances for ISCCP.J. Climate 6, 2341–2369.Google Scholar
  36. Rossow, W. B., Garder, L. C., 1993b: Validation of ISCCP cloud detections.J. Climate 6, 2370–2393.Google Scholar
  37. Rossow, W. B., Walker, A. W., Garder, L. C., 1993: Comparison of ISCCP and other cloud amounts.J. Climate 6, 2394–2418.Google Scholar
  38. Schiffer, R. A., Rossow, W. B., 1983: The ISCCP global radiance data set: A new source for climate research.Bull. Amer. Meteor. Soc. 64, 779–784.Google Scholar
  39. Schwarzkopf, M. D., Fels, S. B., 1985: Improvements to the algorithm for computing CO2 transmissivities and cooling rates.J. Geophys. Res. 90, 10,541–10,550.Google Scholar
  40. Schwarzkopf, M. D., Fels, S. B., 1991: The simplified exchange method revisited: an accurate rapid method for computation of infrared cooling rates and fluxes.J. Geophys. Res. 96, 9075–9096.Google Scholar
  41. Slingo, A., Slingo, J. M., 1991: Response of the National Center for Atmospheric Research Community Climate Model to improvements in the representation of clouds.J. Geophys. Res. 96, 15,341–15,357.Google Scholar
  42. Slingo, J. M., 1984: Studies of cloud-radiation interaction in the ECMWF medium range forecast model. In: Fiocco, G. (ed.)IRS'84: Current Problems in Atmospheric Radiation. Hampton VA: A. Deepak, 1984.Google Scholar
  43. Slingo, J. M., 1987: The development and verification of a cloud prediction scheme for the ECMWF model.Quart. J. Roy. Meteor. Soc. 113, 899–927.Google Scholar
  44. Smagorinsky, J., Manabe, S., Holloway, J. L., 1965: Numerical results from a nine-level general circulation model of the atmosphere.Mon. Wea. Rev. 93, 727–768.Google Scholar
  45. Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model.Quart. J. Roy. Meteor. Soc. 116, 435–460.Google Scholar
  46. Tiedtke, M., 1993: Representation of clouds in large-scale models.Mon. Wea. Rev. 121, 3040–3061.Google Scholar
  47. Trapnell, R. N. Jr., 1992: Cloud curve algorithm test program. Rep. PL-TR-92-2052, Phillips Lab., Hanscom AFB, MA, 170 pp.Google Scholar
  48. Weare, B. B., Mokhov, I. I., and Project Members, 1995: Evaluation of total cloudiness and its variability in the atmospheric model intercomparison project.J. Climate 8, 2224–2238.Google Scholar
  49. Xu, K.-M., Krueger, S. K., 1991: Evaluation of cloudiness parameterizations using a cumulus ensemble model.Mon. Wea. Rev. 119, 342–367.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • R. I. Cullather
    • 3
  • Harshvardhan
    • 3
  • K. A. Campana
    • 2
    • 3
  1. 1.Byrd Polar Research CenterThe Ohio State UniversityColumbusUSA
  2. 2.National Centers for Environmental PredictionWashington, D.C.USA
  3. 3.Department of Earth and Atmospheric SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations