Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Simulation of the diffusion of silicon in gallium arsenide. 4. DPSU program and results of numerical calculations

  • 20 Accesses

  • 1 Citations

Abstract

A program is developed for simulating the diffusion of silicon in gallium arsenide, and numerical calculations are performed for the process of high-concentration doping of gallium arsenide during thermal diffusion of silicon from a source with a constant concentration of the impurity near the surface of the semiconductor.

This is a preview of subscription content, log in to check access.

Abbreviations

n i :

concentration of intrinsic charge carriers

D i :

intrinsic coefficient of silicone diffusion in gallium arsenide

V Ga r :

gallium vacancy in the charged state\(r_{Ga}^ - \)

V As r+ :

arsenic vacancy in the charged stater As +

×:

sign of the neutral charged state

\(\tilde C_{Ga}^{V_X } \) and\(\tilde C_{As}^{V_X } \) :

concentrations of gallium and arsenic vacancies reduced to thermally equilibrium values in the neutral charged state

C andC A :

concentrations of atoms at the nodes of the gallium and arsenic sublattices, respectively

C T :

total concentration of silicon atoms

N :

concentration of ionized atoms of a different impurity with the opposite type of conductivity

T :

temperature

t :

time of heat treatment

D(χ, T) :

effective coefficient of silicon diffusion in gallium arsenide

χ:

reduced concentration of electrons

C S T :

total concentration of impurity atoms near the semiconductor surface

L Ga V andL As V :

diffusional mean free paths of gallium and arsenic vacancies, respectively

References

  1. 1.

    O. I. Velichko, A. A. Egorov, and S. K. Fedoruk, Inzh.-Fiz. Zh.,65, No. 5, 567–572 (1993).

  2. 2.

    O. I. Velichko, A. A. Egorov, and S. K. Fedoruk, Inzh.-Fiz. Zh.,66, No. 1, 83–86 (1994).

  3. 3.

    O. I. Velichko, A. A. Egorov, and S. K. Fedoruk, Inzh.-Fiz. Zh.,66, No. 4, 484–489 (1994).

  4. 4.

    D. G. Deppe, N. Holonyak, Jr., F. A. Kish, and J. E. Baker, Appl. Phys. Lett.,50, No. 15, 998–1000 (1987).

  5. 5.

    T. Y. Tan and U. Gosele, Mater. Sci. and Eng.,B1, No. 1, 47–65 (1988).

  6. 6.

    D. G. Deppe, N. Holonyak, Jr., W. E. Piano, V. M. Robbins, J. M. Dallesasse, K. C. Hsieh, and J. E. Baker, J. Appl. Phys.,64, No. 4, 1838–1844 (1988).

  7. 7.

    R. A. Morrow, J. Appl. Phys.,64, No. 4, 1889–1896 (1988).

  8. 8.

    F. Hyuga, J. Appl. Phys.,64, No. 8, 3880–3884 (1988).

Download references

Additional information

Belarusian State University; Belarusian State University of Informatics and Radioelectronics, Minsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 66, No. 6, pp. 725–728, June, 1994.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Velichko, O.I., Egorov, A.A. & Fedoruk, S.K. Simulation of the diffusion of silicon in gallium arsenide. 4. DPSU program and results of numerical calculations. J Eng Phys Thermophys 66, 648–650 (1994). https://doi.org/10.1007/BF00867966

Download citation

Keywords

  • Silicon
  • Statistical Physic
  • Numerical Calculation
  • Gallium
  • Thermal Diffusion