Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The behaviour of the atmospheric aerosol scattering coefficient under varying meteorological conditions

Summary

The atmospheric aerosol scattering coefficientσ s , measured for more than a year more or less continuously in Vienna, Austria, exhibits unexpected patterns of variation. Apart from the usual ones following changes in relative humidity or traffic characteristics,a distinctive pattern is found before a change in air mass.σ s rises by a factor of 1.5 to 2 some hours (usually two or three) before the passage of the front without a corresponding change in emission characteristics or relative humidity and then falls either below or to its previous level. This behaviour ofσ s occurred at all frontal passages during the sampling period at all times of day and of year except when the wind speeds were very high.

An explanation is attempted by examining the mixing heights before a change in airmass since a reduced vertical dispersion due to pre-frontal changes of stability could account for the increase inσ s (and thus the aerosol concentration). It has been found that calculated mixing heights are reduced by nearly the same factor as the value ofσ s is increased before the front. After the front the factors are similar, but then the aerosol concentration depends also on the origin of the air mass.

Zusammenfassung

Der Streukoeffizient des atmosphärischen Aerosols (σ s ) wurde in Wien mehr als ein Jahr lang mehr oder weniger kontinuierlich gemessen. Dabei zeigten sich unerwartete Änderungen. Abgesehen vom üblichen Tagesgang im Zusammenhang mit Verkehr und relativer Feuchte fand sich vor einem Luftmassenwechsel ein charakteristischer zeitlicher Verlauf.σ s steigt einige Stunden (meist zwei oder drei) vor dem Frontdurchgang an, ohne daß sich die relative Feuchte oder die Quellencharakteristik entsprechend ändert, und fällt dann entweder auf oder unter seinen ursprünglichen Wert. Dieses Verhalten trat bei allen Frontdurchgängen zu jeder Tages- und Jahreszeit auf. Die einzigen Ausnahmen waren Fronten mit sehr hohen Windgeschwindigkeiten.

In dieser Arbeit wird versucht, das Verhalten des Streukoeffizienten (und damit der Aerosolkonzentration) durch eine Betrachtung der Mischungshöhen zu erklären, da eine Reduktion der vertikalen Ausbreitung durch Stabilitätsänderungen vor der Front den Anstieg vonσ s bewirken könnte. Eine Berechnung der Mischungshöhen ergab, daß sie vor der Front um fast denselben Faktor abnahmen um denσ s anstieg. Nach der Front waren die Änderungsfaktoren einander ähnlich, obwohl die Aerosolkonzentration auch vom Ursprung der Luftmasse abhing.

This is a preview of subscription content, log in to check access.

References

  1. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. J Wiley & Sons, New York

  2. Bonner WD (1965) Statistical and kinematical properties of the low level jet stream. SMRP Res Paper no 38, Satellite and Mesometeorological Research Project, University of Chicago

  3. Browning KA, Harrold TW (1970) Air motion and precipitation growth at a cold front. Quart J R Met Soc 96: 369–389

  4. Browning KA, Pardoe CW (1973) Structure of low level jet streams ahead of mid-latitude cold fronts. Quart J R Met Soc 99: 619–638

  5. Browning KA, Monk GA (1982) A simple model for the synoptic analysis of cold fronts. Quart J R Met Soc 108: 435–452

  6. Brumberger H, Stein RS, Rowell R (1968) Light scattering. Sci Technol, November 34–60

  7. Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1973) Flux-profile relationships in the atmospheric surface layer. J Atm Sci 28: 181–189

  8. Covert DS, Charlson RJ, Ahlquist NC (1972) A study of the relationships of chemical composition and humidity to light scattering by aerosols. J Appl Met 12: 968–976

  9. Derimendjian D (1969) Electromagnetic scattering on spherical polydispersions. American Elsevier, New York

  10. van Dop H, de Haan BJ, Engeldal C (1982) The KNMI mesoscale air pollution model. Koninklijk Nederlands Meteorologisch Instituts, De Bilt, scientific report WR 82-6

  11. Fitzgerald J (1980) The relative contribution of fluctuations in relative humidity and particulate concentrations to the variability of the scattering coefficent over the North Atlantic. Atm Env 14: 71–77

  12. Gaffen DJ, Bornstein RD (1984) Meteorological and sulfur dioxide patterns during seabreeze and synoptic frontal passages through a coastal boundarylayer. J Clim Appl Met, in press

  13. Hanel G (1971) New results concerning the dependence of visibility on relative humidity and their significance in a model for visibility forecast. Beitr Phys Atm 44: 137–167

  14. Hanel G (1976) The properties of atmospheric aerosol particles as functions of relative humidity at thermodynamic equilibrium with surrounding moist air. Adv Geophys 19: 73–188

  15. Hanel G, Lehmann M (1981) Equilibrium size of aerosol particles and relative humidity: New experimental data from various aerosol types and their treatment for cloud physics application. Beitr Phys Atm 54: 57

  16. Heintzenberg J, Quenzel H (1973) On the effect of the loss of large particles on the determination of scattering coefficients with integrating nephelometers. Atm Env 7: 503–507

  17. Hitzenberger R, Husar RB (1984) A comparison of extinction and size distribution data measured at two urban sites in the US and Europe. Atm Env 18: 449–452

  18. Hitzenberger R, Horvath H, Pimminger M, Puxbaum H (1984) Variability of rural aerosols under stable weather conditions. 11th International Conference on Atmospheric Aerosols, Condensation and Ice Nuclei. Budapest, September 1984

  19. Hobbs PV, Houze jr RA, Matejka TJ (1975) The dynamical and microphysical structure of an occluded frontal system and its modification by orography. J Atm Sci 32: 1542–1562

  20. Hoinkes H (1951) Frontenanalyse mit Hilfe von Bergbeobachtungen. Arch Met Geophys Biokl A4: 239–262

  21. Holtslag AAM, de Bruin HAR, van Ulden AP (1981) Estimation of the sensible heat flux from standard meteorological data for stability calculations during daytime. In: de Wispelaere C (ed) Air pollution modelling and its application I. Plenum Press, New York

  22. Holtslag AAM, van Ulden AP (1982) Simple estimates of nighttime surface fluxes from routine weather data. Scientific Report WR 82-4, KNMI, De Bilt

  23. Holtslag AAM, van Ulden AP (1983) A simple scheme for daytime estimates of the surface fluxes from routine weather data. J Clim Appl Met 22: 517–529

  24. von Hoyningen-Huene W (1984) Zu Zielstellungen, Methoden und Ergebnissen von Untersuchungen optischer Charakteristika der Atmosphäre. Wiss Z Karl-Marx-Univ, Leipzig, Math-Naturwiss R 33: 186–196

  25. van de Hulst HC (1957) Light scattering by small particles. J Wiley & Sons, New York

  26. Kerker M (1969) The scattering of light and other electromagnetic radiation. Academic Press, London, New York

  27. Kreitzberg W, Brown HA (1970) Mesoscale weather systems within an occlusion. J Appl Met 9: 417–432

  28. Lamb (1982) In: Nieuwstadt FTM, van Dop H (eds) Atmospheric turbulence and air pollution modelling. R Reidel, Dordrecht

  29. Mie G (1908) Ein Beitrag zur Optik trüber Medien, besonders kolloidaler Goldsuspensionen. Ann Phys 25: 377–445

  30. Nieuwstadt FTM (1981) The steady state height and resistance laws of the nocturnal boundary layer: Theory compared to observations. Boundary Layer Met 20: 3–17

  31. Obukhov AM (1971) Turbulence in an atmosphere with a non-uniform temperature. Boundary-Layer Met 2: 7–29

  32. Pearce RP (1972) Large wind shears near the earth's surface. Zit nach Browning and Pardoe 1973

  33. Winkler P (1969) Untersuchungen über das Größenwachstum natürlicher Aerosolteilchen mit der relativen Feuchte nach einer Wägemethode. Ann Met, NF 4: 134–137

Download references

Author information

Additional information

With 5 Figures

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hitzenberger, R. The behaviour of the atmospheric aerosol scattering coefficient under varying meteorological conditions. Theor Appl Climatol 37, 175–183 (1986). https://doi.org/10.1007/BF00867575

Download citation

Keywords

  • Waste Water
  • Relative Humidity
  • Wind Speed
  • Meteorological Condition
  • Emission Characteristic