Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Climatological features of glacier and valley winds at the Hintereisferner (Ötztal Alps, Austria)

  • 112 Accesses

  • 16 Citations

Summary

Homogeneous wind measurements during summer 1971 and the 2 years 1977/78 were analysed at 3 sites of Hintereisferner (HEF) which is a valley-type glacier of 9 km length and northeasterly exposition in the Austrian Ötztal Alps. Some manifestations of “glacier winds” were found to verify a mesoscale circulation driven by gravity and differential heating of the air above ice surfaces and their ice free moraine surroundings. Modifications are mainly due to local topography and gradient winds.

Throughout the year the wind regime at the glacier, esp. at the tongue, is clearly dominated by downsloping winds, reflecting the great potential of snow and ice areas in generating cold air downflow. Undisturbed glacier winds were found to occur most likely on sunny days with weak upper air winds. An influence of katabatic winds down from surrounding moraine slopes is indicated during night time hours. During sunlit hours the occurrence and strength of glacier winds is clearly correlated to the seasonal and daily solar cycle. The development of a regular diurnal variation of wind speeds with a single maximum about 5 m/s during afternoon hours is typical for the glacial wind regime and is most pronounced during the melting season. The observed wind speeds correspond with the diurnal development of vertical and horizontal temperature gradients of the air above the glacier.

Clear day northerly winds penetrate most frequently in spring and autumn as far as to the tongue of HEF and are likely to represent thermally driven upvalley winds. They characterize fine weather in alpine valleys, when even signs of a local slope circulation above excessively heated moraine surfaces are indicated too.

This is a preview of subscription content, log in to check access.

References

  1. Ball, F. K., 1957: The katabatic winds of Adelie Land and King George V Land.Tellus 9, 201–208.

  2. Bromwich, D. H., 1989: Satellite analyses of Antarctic katabatic wind behaviour.Bull. Am. Meteor. Soc. 70, 738–749.

  3. Defant, A., 1933: Der Abfluß schwerer Luftmassen auf geneigtem Boden nebst einigen Bemerkungen zu der Theorie stationärer Luftströme. Sitzungsber. Preuss. Akad. Wissensch.Phys.-Math. Kl. XVIII, 624–635.

  4. Defant, F., 1951: Local winds. In: Malone, T. F. (ed.)Compendium of Meteorology Boston. AMS, 655–672.

  5. Dickerson, M. H., (ed.), 1980: ASCOT Information Survey, Lawrence Livermore National Laboratory, University of California Livermore, California 94550.

  6. Ekhart, E., 1934: Die periodischen Tageswinde in einem Quertale der Alpen.Beitr. Phys. Atmosphäre 21, 217–222.

  7. Ekhart, E., 1935: Über einige Gletscherwindmessungen in den Ötztaler Alpen.Zeitschr. f. Gletscherk. XXII, 217–222.

  8. Fleagle, R. G., 1950: A theory of air drainage.J. Meteor. 7, 227–232.

  9. Hoinkes, H., 1954: Zur Mikrometeorologie der eisnahen Lufschicht.Arch. Met. Geoph. Biokl. B4, 451–458.

  10. Hoinkes, H., 1955: Beiträge zur Kenntnis des Gletscherwinds.Arch. Met. Geoph. Biokl. B6, 36–53.

  11. Hoinkes, H., 1956: Einfluß des Gletscherwindes auf die Ablation.Zeitschr. Gletscherk. Glazialgeol. III/1, 18–23.

  12. Kuhn, M., 1978: Die Höhe des Geschwindigkeitsmaximums im Gletscherwind als Parameter des Wärmehaushalts. Arbeiten aus der Zentralanstalt für Meteorologie und Geodynamik in Wien, Heft 31, 69/1–69/8.

  13. Mahrt, L., 1982: Momentum balance of gravity flows.J. Atmos. Sci. 39, 2701–2708.

  14. Manins, P. C., Sawford, B. L., 1979: A model of Katabatic winds.J. Atmos. Sci. 36, 619–630.

  15. Martin, S., 1975: Wind regimes and heat exchange on glacier de Saint-Sorlin.J. Glaciol. 14/70, 91–105.

  16. Ohata, T., 1989: The effect of glacier wind on local climate, turbulent heat fluxes and ablation.Zeitschr. Gletscherk. Glazialgeol. 25/1, 49–68.

  17. Parish, T. R., Bromwich, D. H., 1989: Instrumented aircraft observations of the Katabatic wind regime near terra nova bay.Mon. Wea. Rev. 17, 1570–1585.

  18. Parish, T. R., Bromwich, D. H., 1991: Continental-scale simulation of the antarctic Katabatic wind regime.J. Climate 4, 135–146.

  19. Petkovsek, Z., Hocevar, A., 1971: Night drainage winds.Arch. Met. Geoph. Biokl. A20, 353–360.

  20. Siogas, L., 1977: Die Windverhältnisse an der Station Hintereis (3026 m) in den Ötztaler Alpen.Arch. Met. Geoph. Biokl. B25, 79–89.

  21. Streten, N. A., Ishikawa, N., Wendler, G., 1974: Some observations of the local wind regime on an Alaskan Arctic glacier.Arch. Met. Geoph. Biokl. B22, 337–350.

  22. Streten, N. A., Wendler, G., 1967: Some observations of Alaskan glacier winds in midsummer.Arctic 20/2, 98–102.

  23. Takahari, H., Higuchi, K., 1985: Thermal modification of air moving over melting snow surfaces,Ann Glaciol. 6, 235–237.

  24. Thyer, N. H., 1966: A theoretical explanation of mountain and valley winds by a numerical method.Arch. Met. Geoph. Biokl. A15, 318–348.

  25. Wagner, H. P., 1980: Strahlungshaushaltsuntersuchungen an einem Ostalpengletscher während der Hauptablationsperiode, Teil II: Langwellige Strahlung und Strahlungsbilanz.Arch. Met. Geoph. Biokl. B28, 41–62.

  26. Weber, M., 1987: LUZIVER: Untersuchungen zum Gletscherwindregime am Vernagtferner in den Ötztaler Alpen, Dipl. thesis, University of München, 99pp.

Download references

Author information

Additional information

With 14 Figures

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Obleitner, F. Climatological features of glacier and valley winds at the Hintereisferner (Ötztal Alps, Austria). Theor Appl Climatol 49, 225–239 (1994). https://doi.org/10.1007/BF00867462

Download citation

Keywords

  • Wind Regime
  • Horizontal Temperature Gradient
  • Katabatic Wind
  • Mesoscale Circulation
  • Alpine Valley