Advertisement

Theoretical and Applied Climatology

, Volume 38, Issue 4, pp 210–221 | Cite as

A comparison of the chemical composition of fog and rainwater collected in the Fichtelgebirge, Federal Republic of Germany, and from the South Island of New Zealand

  • W. Verhoeven
  • R. Herrmann
  • R. Eiden
  • O. Klemm
Article

Summary

We measured ionic compounds in rain and fog at two remote sites in the South Island of New Zealand and at two sites in the Fichtelgebirge, F. R. of Germany. In the Fichtelgebirge high concentrations of H3O+, NO 3 , SO 4 2− and NH 4 + indicate an anthropogenic impact, whereas in New Zealand concentrations were generally very low except for seasalt derived ions such as Na+, Cl and Mg2+ at one site near the coast which receives precipitation from maritime sources. Remarkable differences occur in the acidity of hydrometeors in New Zealand and the Fichtelgebirge. The low pH values of the Fichtelgebirge (pH ≈ 4.2) are due to an excess of strong mineral acids, whereas the acidity of rain and fog in New Zealand is controlled by dissolved CO2 (pH ≈ 5.6). In the Fichtelgebirge, acidity in fog is much higher than in rain, whereas no difference could be observed in New Zealand due to marine influences and the lack of strong mineral acids. Rain of different trajectories of air flow in New Zealand is accompanied by a wide range of ionic concentrations.

Keywords

Waste Water Acidity Ionic Concentration Federal Republic Remarkable Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

An zwei entlegenen Meßstellen der Südinsel Neuseelands und an zwei Meßstellen im Fichtelgebirge haben wir die Ionen im Regen und Nebel gemessen. Die Luftverschmutzung im Fichtelgebirge ist gekennzeichnet durch hohe Konzentrationen von H3O+, NO 3 , SO 4 2− und NH 4 + . Die Ionenkonzentrationen im neuseeländischen Niederschlagswasser waren durchwegs sehr gering mit Ausnahme von Na+, Cl und Mg2+, die aus Seesalzen stammen und nur in einer küstennahen Meßstelle bei günstigen Wetterlagen bestimmt werden konnten. Große Unterschiede bestehen in der Azidität der Hydrometeore. Während im Fichtelgebirge starke Mineralsäuren niedrige pH-Werte (pH ≈ 4.2) bewirken, wird die Azidität des Regens und des Nebels an den neuseeländischen Meßstellen durch gelöstes CO2 kontrolliert (pH ≈ 5.6). Im Fichtelgebirge ist die Azidität im Nebel erheblich höher als im Regen. Im Gegensatz dazu konnten wir keinen Unterschied in der Azidität zwischen Nebel und Regen in Neuseeland beobachten, was wir mit dem marinen Einfluß und dem Fehlen starker Mineralsäuren erklären. Unterschiedliche Trajektorien der atmosphärischen Strömung in Neuseeland unterscheiden sich zugleich in ihren Ionenkonzentrationen im Regen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayers, G. P., 1982: The chemical composition of precipitation: a southern hemisphere perspective. In: Goldberg, E. D. (Ed.):Atmospheric Chemistry. Dahlem Konf. 1982. Berlin: Springer, 41–56.Google Scholar
  2. Barnes, R. A., 1979: The long range transport of air pollution. A review of European experience.J. Air Poll. Contr. Ass. 29, 1219–1235.Google Scholar
  3. Chameides, W. L., 1984: The photochemistry of a remote marine stratiform cloud.J. Geophys. Res. 89 D, 4739–4755.Google Scholar
  4. Charlson, R. J., Rodhe, H., 1982: Factors controlling the acidity of natural rainwater.Nature 295, 683–685.Google Scholar
  5. Frevert, T., 1983:Hydrochemisches Grundpraktikum. Basel: Birkhäuser (UTB 1256), 215 pp.Google Scholar
  6. Frevert, T., Klemm, O., 1984: Wie ändern sich pH-Werte im Regen- und Nebelwasser beim Abtrocknen auf Pflanzenoberflächen?Arch. Met. Geophys. Bioclim., Ser. B 34, 75–81.Google Scholar
  7. Fuzzi, S., Castillo, R. A., Jiusto, J. E., Lala, G. G., 1984: Chemical composition of radiation fog water at Albany, New York, and its relationship to fog microphysics.J. Geophys. Res. 89, 7159–7164.Google Scholar
  8. Galloway, J. N., Nikens, G. E., Keene, W. C., Miller, J. M., 1982: The composition of precipitation in remote areas of the world.J. Geophys. Res. 87, 8771–8786.Google Scholar
  9. Georgii, H. W., Perseke, C., Rohbock, E., 1984: Deposition of acidic components and heavy metals in the Federal Republic of Germany for the period 1979–1981.Atmos. Environ. 18, 581–189.Google Scholar
  10. Georgii, H. W., Schmitt, G., 1985: Methoden und Ergebnisse der Nebelanalyse.Staub — Reinhalt Luft 45, 260–264.Google Scholar
  11. Gordon, N. D., 1986: Computer-derived air trajectories. N. Z. Meteorological Service Technical Rep.Google Scholar
  12. Grunow, J., 1954: Bedeutung und Erfassung des Nebelniederschlags. UGGI, AIHS Assemblée Rome, 402–415.Google Scholar
  13. Kins, L., 1982: Temporal variation of chemical composition of rainwater during individual precipitation events. In: Georgii, H. W., Pankrath, J. (Eds.):Deposition of Atmospheric Pollutants. Dordrecht: Reidel, 87–96.Google Scholar
  14. Lerman, A., 1979:Geochemical Processes: Water and Sediment Environments. New York: Wiley, 481 pp.Google Scholar
  15. McCracken, I. J., 1980: Mountain climate in the Craigieburn Range, New Zealand. In: Benecke, U., Davis, M. R. (Eds.): Mountain environments and subalpine growth. Proc. IUFRO Workshop Christchurch N.Z. 1979. N.Z. Forest Service Tech. P. 70, 41–59.Google Scholar
  16. Morgan, J. J., 1982: Factors governing the pH, availability of H+, and oxidation capacity of rain. In: Goldberg, E. D. (Ed.)Atmospheric Chemistry. New York: Springer-Verlag, 17–40.Google Scholar
  17. Mrose, H., 1966: Measurements of pH and chemical analyses of rain-, snow-, and fogwater.Tellus 18, 266–270.Google Scholar
  18. Oehme, M., Manø, 1984: The long-range transport of organic pollutants to the Arctic.Fresenius Z. Anal. Chem. 319, 141–146.Google Scholar
  19. Okita, T., 1968: Concentration of sulfate and other inorganic materials in fog and cloudwater and in aerosol.J. Met. Soc. Jap. 46, 120–127.Google Scholar
  20. Rodhe, H., Mukolwe, E., Söderlund, R., 1981: Chemical composition of precipitation in East Africa.Kenya Journal of Science and Technology, A 2, 3–11.Google Scholar
  21. Ross, J. W. Jr., Frant, M. S., 1969: Potentiometric titrations of sulfate using an ion selective lead electrode.Anal. Chem. 41, 967–969.Google Scholar
  22. Rowe, L. K., 1979: Rainfall interception by a beech-Podocarp-hardwood forest near Reefton, North Westland.J. Hydrology (N.Z.),18, 63–72.Google Scholar
  23. Schrimpff, E., Klemm, O., Eiden, R., Frevert, T., Herrmann, R., 1984: Anwendung eines Grunow-Nebelfängers zur Bestimmung von Schadstoffgehalten in Nebelniederschlägen.Staub — Reinhalt Luft 44, 72–75.Google Scholar
  24. Sigg, L., Johnson, C. A., Zürcher, F., Zobrist, J., Stumm, W., 1985: Atmospheric Pollutants: Their Potential Impact on Aquatic and Terrestrial Ecosystems.EAW AG-News 18/19, 13–16.Google Scholar
  25. Stumm, W., Morgan, J. J., 1981:Aquatic Chemistry. An introduction emphasizing chemical equilibria in natural waters. 2nd ed. New York: Wiley & Sons, 779 pp.Google Scholar
  26. Stumm, W., Morgan, J. J., Schnoor, J. L., 1983: Saurer Regen, eine Folge der Störung hydrogeochemischer Kreisläufe.Naturwissenschaften 70, 216–223.Google Scholar
  27. Tecator, Comp., 1983: Determination of chloride in water by flow injection analysis. Application Sub. Note 63-01.Google Scholar
  28. Waldman, J. M., Munger, J. W., Jacob, D. J., Flagan, R. C., Morgan, J. J., Hoffmann, M. R., 1982: Chemical composition of acid fog.Science 218, 677–680.Google Scholar
  29. Wright, R. F., Gjessing, E., Christophersen, N., Lotse, E., Seip, H. M., Seub, A., Sletaune, B., Storhang, R., Wedum, K., 1986: Project rain: changing acid deposition to whole catchments. The first year of treatment.Water, Air, Soil Poll. 30, 47–63.Google Scholar
  30. Zimmermann, M., 1979: Photometrische Metall- und Wasser-Analysen. Stuttgart: Wiss. Verlagsgesellschaft, B-a 2/1.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • W. Verhoeven
    • 1
  • R. Herrmann
    • 1
  • R. Eiden
    • 1
  • O. Klemm
    • 1
  1. 1.Chair of HydrologyUniversität BayreuthGermany

Personalised recommendations