Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

The Stokes and Vening-Meinesz functionals in a moving tangent space

  • 59 Accesses

  • 9 Citations

Abstract

The regularized solution of the external sphericalStokes boundary value problem as being used for computations of geoid undulations and deflections of the vertical is based upon theGreen functions S 10, Φ0, Λ, Φ) ofBox 0.1 (R = R 0) andV 10, Φ0, Λ, Φ) ofBox 0.2 (R = R 0) which depend on theevaluation point0, Φ0} ∈ S R0 2 and thesampling point {Λ, Φ} ∈ S R0 2 ofgravity anomalies Δ γ (Λ, Φ) with respect to a normal gravitational field of typegm/R (”free air anomaly”). If the evaluation point is taken as the meta-north pole of theStokes reference sphere S R0 2 , theStokes function, and theVening-Meinesz function, respectively, takes the formS(Ψ) ofBox 0.1, andV 2(Ψ) ofBox 0.2, respectively, as soon as we introduce {meta-longitude (azimuth), meta-colatitude (spherical distance)}, namely {A, Ψ} ofBox 0.5. In order to deriveStokes functions andVening-Meinesz functions as well as their integrals, theStokes andVening-Meinesz functionals, in aconvolutive form we map the sampling point {Λ, Φ} onto the tangent plane T0S R0 2 at {Λ0, Φ0} by means ofoblique map projections of type(i) equidistant (Riemann polar/normal coordinates),(ii) conformal and(iii) equiareal.Box 2.1.–2.4. andBox 3.1.– 3.4. are collections of the rigorously transformedconvolutive Stokes functions andStokes integrals andconvolutive Vening-Meinesz functions andVening-Meinesz integrals. The graphs of the correspondingStokes functions S 2(Ψ),S 3(r),⋯,S 6(r) as well as the correspondingStokes-Helmert functions H 2(Ψ),H 3(r),⋯,H 6(r) are given byFigure 4.1–4.5. In contrast, the graphs ofFigure 4.6–4.10 illustrate the correspondingVening-Meinesz functions V 2(Ψ),V 3(r),⋯,V 6(r) as well as the correspondingVening-Meinesz-Helmert functions Q 2(Ψ),Q 3(r),⋯,Q 6(r). The difference between theStokes functions / Vening-Meinesz functions andtheir first term (only used in the Flat Fourier Transforms of type FAST and FASZ), namelyS 2(Ψ) − (sin Ψ/2)−1,S 3(r) − (sinr/2R 0)−1,⋯,S 6(r) − 2R 0/r andV 2(Ψ) + (cos Ψ/2)/2(sin2 Ψ/2),V 3(r) + (cosr/2R 0)/2(sin2 r/2R 0),⋯,\(V_6 (r) + {{(R_0 \sqrt {4R_0^2 - r^2 } )} \mathord{\left/ {\vphantom {{(R_0 \sqrt {4R_0^2 - r^2 } )} {r^2 }}} \right. \kern-\nulldelimiterspace} {r^2 }}\) illustrate the systematic errors in the”flat” Stokes function 2/Ψ or ”flat”Vening-Meinesz function −2/Ψ2. The newly derivedStokes functions S 3(r),⋯,S 6(r) ofBox 2.1–2.3, ofStokes integrals ofBox 2.4, as well asVening-Meinesz functionsV 3(r),⋯,V 6(r) ofBox 3.1–3.3, ofVening-Meinesz integrals ofBox 3.4 — all of convolutive type — pave the way for the rigorousFast Fourier Transform and the rigorousWavelet Transform of theStokes integral / theVening-Meinesz integral of type ”equidistant”, ”conformal” and ”equiareal”.

This is a preview of subscription content, log in to check access.

Literature

  1. Bellaire, R.G. (1971a): Stations of the geodetic uncertainties aloft, Eos. Trans. American Geophysical Union, Washington 1971

  2. Bellaire, R.G. (1971b): Correlation functions on the upper half space, The Analytic Scienes Corporation, Reading, Mass., Report 1971

  3. Bellaire, R.G. (1972): A discussion of flat earth statistical models for the gravity disturbances and their application, The Analytic Scienes Corporation, Reading, Mass., Report 1972

  4. Bursa, M. (1994): Testing geopotential models. Earth, Moon and Planets64 (1994) 293–299

  5. Forsberg, R. and M. G. Sideris (1993): Geoid computations by the multi-band spherical FFT approach, manuscripta geodaetica18 (1993) 82–90

  6. Geodetic Work in the Netherlands 1991–1994: Report prepared for the General Assembly of the International Association of Geodesy, Boulder 1995, Netherlands Geodetic Commission, Delft 1995

  7. Grafarend, E. (1971a): Korrelationslängen von Schwereanomalien und Lotabweichungen, Z. Vermessungswesen96 (1971) 132–158

  8. Grafarend, E. (1971b): Statistische Modelle zur Prädiktion von Lotabweichungen, Vermessungstechnik19 (1971) 66–68

  9. Grafarend, E. (1971c): Isotropietests von Lotabweichungen Westdeutschlands, Z. Geophysik37 (1971) 719–733

  10. Grafarend, E. (1971d): Lotabweichungsverteilungen Westdeutschlands und ihre gruppentheoretische Struktur, Mitt. Institut für Theoretische Geodäsie Universität Bonn, Nr. 1, Bonn 1971

  11. Grafarend, E. (1972): Isotropietests von Lotabweichungsverteilungen in Westdeutschland II, Z. Geophysik38 (1972) 243–255

  12. Grafarend, E. (1975): Geodetic prediction concepts, Bd. 13, Geodetic stochastic processes, Bd. 14, Methoden und Verfahren der mathematischen Physik (eds. B. Brosowski and E. Martensen) Mathematical Geodesy, B. I. Wissenschaftsverlag, Mannheim 1975

  13. Grafarend, E. (1976): Geodetic applications of stochastic processes, Physics of the Earth and Planetary Interiors21 (1976) 151–179

  14. Grafarend, E. (1989): The geoid and the gravimetric boundary value problem, The Royal Institute of Technology Stockholm, Department of Geodesy, Report 18, Trita Geod 1018, Stockholm 1989

  15. Grafarend, E., B. Heck, E.H. Knickmeyer (1985): The free versus fixed geodetic boundary value problem for different combinations of geodetic observables, Bulletin Gêodésique59 (1985) 11–32

  16. Grafarend, E. and W. Keller (1995): Setup of observational functionals in gravity space as well as in geometry space, manuscripta geodaetica20 (1995) 301–325

  17. Grafarend, E. und G. Offermanns (1975): Eine Lotabweichungskarte Westdeutschlands nach einem geodätisch konsistenten Kolmogorov-Wiener-Modell, Deutsche Geodätische Kommission, Report A 82, München 1975

  18. Groten, E. (1965): An gravity prediction using mean anomalies, Dep. Geodetic Science, The Ohio State University, Report 47, Columbus 1965

  19. Groten, E. (1966a): Analytic continuation of gravity using orthogonal functions, Dep. Geodetic Science, The Ohio State University, Report 53, Columbus 1966

  20. Groten, E. (1966b): On the derivation of surface gravity anomalies from airborne measurements, Dep. Geodetic Science, The Ohio State University, Report 88, Columbus 1966

  21. Groten, E. (1979): Geodesy and the Earth's gravity field, vol. I, Dümmler's Verlag, Bonn 1979

  22. Groten, E. (1980): Geodesy and the Earth's gravity field, vol. II, Dümmler's Verlag, Bonn 1980

  23. Haagmans, R., E. de Min and M. van Gelderen (1993): Fast evaluation of convolution integrals on the sphere using 1D FFT, and a comparison with existing methods for Stokes' integral, manuscripta geodaetica18 (1993) 227–241

  24. Helmert, F.R. (1880/84): Die mathematischen und physikalischen Theorien der höheren Geodäsie, Teubner Verlag, Leipzig, I. Teil, Leipzig 1880, II. Teil, Leipzig 1884

  25. Jordan, S.K. (1972a): Effects of geodetic uncertainties on a damped inertial navigation system, Report of the Analytic Sciences Corporation, Reading 1972

  26. Jordan, S.K. (1972b): Discussion of Paper by L. Shaw, I. Paul and P. Henrikson, ”Statistical models for the vertical deflection from gravity-anomaly models”, J. Geophys. Res.77 (1972) 971–973

  27. Jordan, S.K. (1972c): Self-consistent statistical models for the gravity anomaly, vertical deflections, and undulation of the geoid, J. Geophys. Res.77 (1972) 3660–3670

  28. Jordan, S.K. (1973): Stationary statistical models for mass anomalies and gravity disturbances, Report of The Analytic Sciences Corporation, Reading 1973

  29. Jordan, S.K. (1978): Statistical model for gravity, topography and density contrasts in the earth, J. Geophys. Res. ser. B83 (1978) 1816–1824

  30. Jordan, S.K., P.J. Moonan and J.D. Weiss (1981): Statespace models of gravity disturbance gradiens, IEEE Transactions on Aerospace and Electronic Systems17 (1981) 610–619

  31. Kasper, J.F. (1971): A second-order Markov gravity anomaly model, J. Geophys. Res.76 (1971) 7844–7849

  32. Kling, T., M. Becker, H.J. Euler and E. Groten (1987): Studien zur detaillierten Geoidberechnung, Deutsche Geodätische Kommission, Report B 285, München 1987

  33. Li, J. (1993a): The spherical convolution form of Vening-Meinesz formula, Acta Geodaetica et Cartographica Sinica23 (1993) 161–166

  34. Li, J. (1993b): An effective method of eliminating the approximation error in Stokes integration convolution formula, J. Wuhan Technical University of Surveying and Mapping18 (1993) No.4

  35. Ning, J.,D. Chao and J. Li (1994): The spherical convolution form of the Vening-Meinesz formula, Acta Geodaetica et Cartographica Sinica (1993) 11–16

  36. Pick, M., J. Picha and V. Vyskocil (1973): Theory of the Earth's gravity field, Elsevier Scientific Publ., Amsterdam 1973

  37. Schwarz, K.P., M.G. Sideris and R. Forsberg (1990): The use of FFT techniques in physical geodesy, Geophysical Journal International100 (1990) 485–514

  38. Shaofeng, B. and D. Xurong (1991): On the singular integration in physical geodesy, manuscripta geodaetica16 (1991) 283–287

  39. Shaofeng, B. and K. Zhang (1993): The planar solution of geodetic boundary value problem, manuscripta geodaetica18 (1993) 290–294

  40. Shaw, L., I. Paul and P. Henrikson (1969): Statistical Models for the Vertical Deflection from Gravity-Anomaly Models, J. Geophys. Res.74 (1969) 4259–4265

  41. Snyder, J.P. (1982): Map projections used by the U.S. Geological Survey, Geological Survey Bulletin 1532, United States Government Printing Office, Washington 1982

  42. Stokes, G.G. (1849): On the variation of gravity on the surface of the earth, Trans. Cambridge Phil. Soc.8 (1849) 672–695

  43. Strang van Hees, G. (1990): Stokes formula using fast Fourier techniques, manuscripta geodaetica15 (1990) 235–239

  44. Vening-Meinesz, F.A. (1928): A formula expressing the deflection of the plumbline in the gravity anomalies and some formulae for the gravity field and the gravity potential outside the geoid, Proc. Sect. Sci. Kon. Akad. v. Wet. Amsterdam31 (1928) 315–331

  45. Zhang, K., B. Shaofeng and W. Shen (1995): The singular integration of physical geodesy in the frequency domain, manuscripta geodaetica20 (1995) 241–247

Download references

Author information

Correspondence to Erik W. Grafarend.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grafarend, E.W., Krumm, F. The Stokes and Vening-Meinesz functionals in a moving tangent space. Journal of Geodesy 70, 696–713 (1996). https://doi.org/10.1007/BF00867148

Download citation

Keywords

  • Fourier Transform
  • Sampling Point
  • Systematic Error
  • Azimuth
  • Tangent Space