Theoretical and Applied Climatology

, Volume 46, Issue 4, pp 193–202 | Cite as

The efficiency of the conversion of solar energy into wind energy by means of Hadley cells

  • A. De Vos
  • P. van der Wel
Article

Summary

In the present paper, we apply endoreversible thermodynamics in order to calculate the upper bound for the fraction of solar energy absorbed by the Earth, that can be converted into the mechanical energy present in the atmosphere. We assume the presence of six Hadley cells in the Earth's wind system and find an upper limit of 1.17%. For Mars we assume a single Hadley cell and find an upper limit of 0.87%.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lettau, H., 1954: A study of the mass, momentum and energy budget of the atmosphere.Arch. Met. Geoph. Biokl. 7, 133–157.Google Scholar
  2. Hubbert, M., 1971: The energy resources of the earth.Scientific American 225(9), 60–70.Google Scholar
  3. Gustavson, M., 1979: Limits to wind power utilization.Science 204, 13–17.Google Scholar
  4. Ingersoll, A., 1981: Jupiter and Saturn.Scientific American 245(12), 66–80.Google Scholar
  5. Arpe, K., Brankovic, C., Oriol, E., Speth, P., 1986: Variability in time and space of energetics from a long series of atmospheric data produced by ECMWF.Beiträge zur Physik der Atmosphäre 59, 321–355.Google Scholar
  6. Peixoto, J., Oort, A., 1992:Physics of Climate. New York: American Institute of Physics, 365–400.Google Scholar
  7. Pollarolo, G., Sertorio, L., 1979: Energy and entropy balance for black piecewise homogeneous planet.Il Nuovo Cimento 2C, 335–351.Google Scholar
  8. Sertorio, L., 1980: Thermodynamic equations for a black planet with nearest-neighbour surface Carnot interaction.Il Nuovo Cimento 3C, 37–44.Google Scholar
  9. d'Isep, F., Sertorio, L., 1983: On the estimate of the mechanical power that can be processed by the earth.Il Nuovo Cimento 6C, 97–132.Google Scholar
  10. Sertorio, L., 1991:Thermodynamics of Complex Systems. Singapore: World Scientific, pp. 109–124.Google Scholar
  11. De Vos, A., Flater, G., 1991: The maximum efficiency of the conversion of solar energy into wind energy.Am. J. Phys. 59, 751–754.Google Scholar
  12. De Vos, A., van der Wel, P., 1992: Endoreversible models for the conversion of solar energy into wind energy.J. Non-equilibrium Thermodynamics 17, 77–89.Google Scholar
  13. De Vos, A., 1992:Endoreversible Thermodynamics of Solar Energy Conversion. Oxford: Oxford University Press, 29–67.Google Scholar
  14. Wexler, H., 1955: The circulation of the atmosphere.Scientific American 193(9), 114–124.Google Scholar
  15. Shu, F., 1982:The Physical Universe, an Introduction to Astronomy. Mill Valley: University Science Books, pp. 415–458.Google Scholar
  16. Beatty, J., O'Leary, B., Chaikin, A., 1981:The New Solar System. Cambridge: Cambridge University Press, pp. 57–63.Google Scholar
  17. Haberle R., 1986: The climate of Mars.Scientific American 254(5), 42–50.Google Scholar
  18. Rubin, M., 1979: Optimal configurations of a class of irreversible engines.Phys. Rev. A 19, 1272–1276.Google Scholar
  19. Curzon, F., Ahlborn, B., 1975: Efficiency of a Carnot engine at maximum power output.Am. J. Phys. 43, 22–24.Google Scholar
  20. De Vos, A., 1981: Efficiency of some heat engines at maximum-power conditions.Am. J. Phys. 53, 570–573.Google Scholar
  21. De Vos, A., 1987: Reflections on the power delivered by endoreversible engines.J. Phys. D: Appl. Phys. 20, 232–236.Google Scholar
  22. Lorenz, E., 1955: Available potential energy and the maintenance of the general circulation.Tellus 7, 157–167.Google Scholar
  23. Lorenz, E., 1960: Generation of available potential energy and the intensity of the general circulation. In: Pfeffer, R. (ed.)Dynamics of Climate. New York: Pergamon Press, 86–92.Google Scholar
  24. Schulman, L., 1977: A theoretical study of the efficiency of the general circulation.J. Atmos. Sci. 34, 559–580.Google Scholar
  25. Paltridge, G., 1978: The steady-state format of global climate.Quart. J. Roy. Meteor. Soc. 104, 927–945.Google Scholar
  26. Lin, C., 1982: An extremal principle for a one-dimensional climate model.Geophys. Res. Lett. 9, 716–718.Google Scholar
  27. Paltridge, G., 1979: Climate and thermodynamic systems of maximum dissipation.Nature 279, 630–631.Google Scholar
  28. Paltridge, G., 1981: Thermodynamic dissipation and the global climate system.Quart. J. Roy. Meteor. Soc. 107, 531–547.Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • A. De Vos
    • 1
  • P. van der Wel
    • 1
  1. 1.Laboratorium voor elektronika en meettechniekUniversiteit GentBelgium

Personalised recommendations