Advertisement

Pediatric Nephrology

, Volume 8, Issue 2, pp 175–180 | Cite as

Intrauterine growth retardation leads to a permanent nephron deficit in the rat

  • Claudie Merlet-Bénichou
  • Thierry Gilbert
  • Martine Muffat-Joly
  • Martine Lelièvre-Pégorier
  • Bruno Leroy
Original Article

Abstract

Intrauterine growth retardation (IUGR) was induced in Sprague-Dawley rats by partial artery ligation of one uterine horn in the mother on day 17 of gestation or by feeding the mother a 5% protein diet from day 8 of gestation. The controls were pups of the contralateral uterine horn or pups born to mothers fed a normal (22%) protein diet. The number of nephrons present at birth and the final number of nephrons in 2-week-old rats were counted throughout the entire kidney. The number of nephrons present at birth and the final number of nephrons were significantly correlated with birth weight for growth-retarded rats of both groups and their corresponding controls (P<0.02 for the poorest correlation). Clearance experiments and morphometric studies of 2-week-old rats born to mothers with uterine artery ligation indicated that, despite a large compensatory hypertrophy of the nephrons in those animals born with a nephron deficit of about 30%, the overal renal function was impaired. We conclude that IUGR is accompanied by a nephron deficit which may not be fully compensated for within the first weeks after birth.

Key words

Intrauterine growth retardation Number of nephrons Renal function Compensatory hypertrophy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Royer P, Habib R, Mathieu H, Courtecuisse V (1962) L'hypoplasie rénale bilatérale congénitale avec réduction du nombre et hypertrophie des néphrons chez l'enfant. Ann Pediatr (Paris) 38: 753–766Google Scholar
  2. 2.
    Royer P, Habib R, Leclerc F (1967) L'hypoplasie rénale bilatérale avec oligoméganéphronie. Proceedings of the 3rd International Congress of Nephrology. Karger, Basel, pp 251–275Google Scholar
  3. 3.
    Van Acker KJ, Vincke H, Quatacker J, Senesael L, Van Den Brande J (1971) Congenital oligonephronic renal hypoplasia with hypertrophy of nephrons (oligonephronia). Arch Dis Child 46: 321–326Google Scholar
  4. 4.
    Bernstein J, Meyer R (1964) Some speculations on the nature and significance of developmentally small kidneys (renal hypoplasia). Nephron 1:137–143Google Scholar
  5. 5.
    Mc Graw M, Poucell S, Sweet J, Baumal R (1984) The significance of focal segmental glomerulosclerosis in oligomeganephronia. Int J Pediatr Nephrol 5:67–72Google Scholar
  6. 6.
    Gilbert T, Lelièvre-Pégorier M, Merlet-Bénichou C (1991) Long-term effects of mild oligonephronia induced in utero by gentamicin in the rat. Pediatr Res 30:450–456Google Scholar
  7. 7.
    Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens 1: 335–347Google Scholar
  8. 8.
    Gilbert T, Lelièvre-Pégorier M, Maliénou R, Meulemans A, Merlet-Bénichou C (1987) Effects of prenatal and postnatal exposure to gentamicin on renal differentiation in the rat. Toxicology 43:301–313Google Scholar
  9. 9.
    Gilbert T, Nabarra B, Merlet-Bénichou C (1988) Light and electron microscopic analysis of the kidney in newborn rats exposed to gentamicin in utero. Am J Pathol 130:33–43Google Scholar
  10. 10.
    Cavalier S, Moreau E, Gilbert T, Merlet-Bénichou C (1992) In vitro effect of gentamicin on renal differentiation in the rat. Renal Physiol Biochem 15:196Google Scholar
  11. 11.
    Zeman FJ (1968) Effects of maternal protein restriction on the kidney of the newborn young of rats. J Nutr 94:111–116Google Scholar
  12. 12.
    Sandstrom DJ, Troy JL, Brenner BM, Rennke HG (1990) Effect of maternal dietary protein content on nephron development in the rat and progressive glomerulosclerosis following nephrectomy. J Am Soc Nephrol 1:295Google Scholar
  13. 13.
    Larsson L, Aperia A, Wilton P (1980) Effect of normal development on compensatory renal growth. Kidney Int 18:29–35Google Scholar
  14. 14.
    Wigglesworth JS (1964) Experimental growth retardation in the foetal rat. J Pathol Bacterial 88:1–13Google Scholar
  15. 15.
    Damadian RV, Shawayri E, Bricker NS (1965) On the existence of non-urine forming nephrons in the diseased kidney of the dog. J Lab Clin Med 65:26–39Google Scholar
  16. 16.
    Rouffignac C de, Deiss S, Bonvalet JP (1970) Détermination du taux individuel de filtration glomérulaire des néphrons accessibles et inaccessibles à la microponction. Pflugers Arch 315:273–290Google Scholar
  17. 17.
    Merlet-Bénichou C, Pégorier M, Muffat-Joly M, Augeron C (1981) Functional and morphologic patterns of renal maturation in the developing guinea-pig. Am J Physiol 241:F618-F624Google Scholar
  18. 18.
    Zeman FJ, Stanbrough EC (1969) Effect of maternal protein deficiency on cellular development in the fetal rat. J Nutr 99: 274–282Google Scholar
  19. 19.
    Rosso P (1977) Maternal-fetal exchange during protein malnutrition in the rat. Placental transfer of alpha-amino isobutyric acid. J Nutr 107:2002–2005Google Scholar
  20. 20.
    Venkatachalam PS, Ramanathan KS (1964) Effect of protein deficiency during gestation and lactation on body weight and composition of offspring. J Nutr 84:38–42Google Scholar
  21. 21.
    Goldstein RS, Hook JB, Bond JT (1979) The effects of maternal protein deprivation on renal development and function in neonatal rats. J Nutr 109:949–957Google Scholar
  22. 22.
    Rosso P, Streeter MR (1979) Effects of food or protein restriction on plasma volume expansion in pregnant rats. J Nutr 109: 1887–1892Google Scholar
  23. 23.
    Grosvenor MB, Zeman FJ (1983) In vitro amino acid transport by renal tubules of prenatally protein-deprived fetal rats. J Nutr 113: 1513–1520Google Scholar
  24. 24.
    Minkowski A, Chanez C (1983) Some pathophysiologic changes in experimental intrauterine malnutrition. In: Kretchmer N, Minkowski A (eds) Nutritional adaptation of the gastrointestinal tract of the newborn. Raven, New York, pp 131–149Google Scholar
  25. 25.
    Dawes GS (1968) The fetal circulation. In: Dawes GS (ed) Foetal and neonatal physiology. Year Book Medical, Chicago, pp 91–105Google Scholar
  26. 26.
    Gilbert T, Lelièvre-Pégorier M, Merlet-Bénichou C (1990) Immediate and long-term renal effects of fetal exposure to gentamicin. Pediatr Nephrol 4:445–450Google Scholar
  27. 27.
    Brenner BM (1985) Nephron adaptation to renal injury or ablation. Am J Physiol 249:F324-F337Google Scholar
  28. 28.
    Leroy B, Josset P, Morgan G, Costil J, Merlet-Bénichou C (1992) Intrauterine growth retardation (IUGR) and nephron deficit: preliminary study in man. Pediatr Nephrol 6:21CGoogle Scholar
  29. 29.
    Scheinman JI, Abelson HT (1970) Bilateral renal hypoplasia with oligonephronia. J Pediatr 76:369–376Google Scholar
  30. 30.
    Whincup PH, Cook DG, Shaper AG (1989) Early influences on blood pressure: a study of children aged 5–7 years. BMJ 299: 587–591Google Scholar
  31. 31.
    Law CM, Barker DJP, Bull AR, Osmond C (1991) Maternal and fetal influences on blood pressure. Arch Dis Child 66:1291–1295Google Scholar
  32. 32.
    Barker DJP, Osmond C, Winter PD, Margetts B, Simmonds SJ (1989) Weight in infancy and death from ischaemic heart disease. Lancet ii:577–580Google Scholar
  33. 33.
    Murdaugh HV, Fetterman GH (1971) Smal kidneys, polyuria, growth retardation, and renal failure. J Pediatr 79:858–867Google Scholar
  34. 34.
    Kiprov DD, Colvin RB, Mc Cluskey RT (1982) Focal and segmental glomerulosclerosis and proteinuria associated with unilateral renal agenesis. Lab Invest 46:275–281Google Scholar
  35. 35.
    Hakim RM, Goldszer RC, Brenner BM (1984) Hypertension and proteinuria: long term sequelae of uninephrectomy in humans. Kidney Int 25:930–936Google Scholar
  36. 36.
    Talseth T, Fauchald P, Skrede S, Djoseland O, Berg KJ, Stenstrom J, Heilo A, Brodwall EK, Flatmark A (1986) Long-term blood pressure and renal function in kidney donors. Kidney Int 29:1072–1076Google Scholar

Copyright information

© IPNA 1994

Authors and Affiliations

  • Claudie Merlet-Bénichou
    • 1
  • Thierry Gilbert
    • 1
  • Martine Muffat-Joly
    • 1
  • Martine Lelièvre-Pégorier
    • 1
  • Bruno Leroy
    • 1
  1. 1.Unité de Recherches sur le Développement Normal et Pathologique des Fonctions Epithéliales, INSERM U. 319Université Paris 7ParisFrance

Personalised recommendations