Journal of Fluorescence

, Volume 3, Issue 2, pp 85–92 | Cite as

Light quenching of tetraphenylbutadiene fluorescence observed during two-photon excitation

  • Ignacy Gryczynski
  • Valery Bogdanov
  • Joseph R. Lakowicz
Article

Abstract

We observed the steady-state and time-resolved emission of tetraphenylbutadiene (TPB) whea excited by simultaneous absorption of two photons (514 to 610 nm). The intensity initially increased quadratically with laser power, as expected for a two-photon process. At higher laser powers the intensity increases in TPB were subquadratic. The intensity and anisotropy decay times of TPB were unchanged under the locally intense illumination. Importantly, the time zero anisotropy of TPB was decreased under conditions where the intensity was subquadratic. Furthermore, the subquadratic dependence on incident power was not observed for two-photon excitation of 2,5-diphenyloxazole (PPO), for which the incident wavelength does not overlap with the emission spectrum. These results are consistent with stimulated emission (light quenching) of TPB at high laser intensities. The phenomenon of light quenching may be important for other fluorophores used in biochemical research, particularly for the high local intensities used for two-photon excitation.

Key Words

Tetraphenylbutadiene light quenching two-photon excitation 2,5-diphenyloxazole 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Lakowicz, I. Gryczynski, Z. Gryczynski, E. Danielsen, and M. J. Wirth (1992)J. Phys. Chem. 96, 3000–3006.Google Scholar
  2. 2.
    J. R. Lakowicz, I. Gryczynski, E. Danielsen, and J. K. Frisoli (1992)Chem. Phys. Lett. 194, 282–287.Google Scholar
  3. 3.
    A. A. Rehms and P. R. Callis (1993)Chem. Phys. Lett., in press.Google Scholar
  4. 4.
    J. R. Lakowicz and I. Gryczynski (1992)Biophys. Chem. 45, 1–6.Google Scholar
  5. 5.
    J. R. Lakowicz, I. Gryczynski, and E. Danielsen (1992)Chem. Phys. Lett. 191, 47–53.Google Scholar
  6. 6.
    J. R. Lakowicz and I. Gryczynski (1992)J. Fluoresc. 2, 117–121.Google Scholar
  7. 7.
    H. Szmacinski, I. Gryczynski, and J. R. Lakowicz (1993)Photochem. Photobiol. 58, 341–345.Google Scholar
  8. 8.
    W. M. McClain (1971)J. Chem. Phys. 55, 2789–2796.Google Scholar
  9. 9.
    A. P. Aleksandrov, V. I. Bredikhin, and V. N. Genkin (1971)Sov. Phys. JETP 33, 1078–1082.Google Scholar
  10. 10.
    W. M. McClain (1971)J. Chem. Phys. 55, 2789–2796.Google Scholar
  11. 11.
    M. J. Wirth, A. Koskelo, and M. J. Sanders (1981)Appl. Spectrosc. 35, 14–21.Google Scholar
  12. 12.
    P. R. Callis (1993) J. Chem. Phys., in press.Google Scholar
  13. 13.
    W. Denk, J. H. Strickler, and W. W. Webb (1990)Science 248, 73–76.Google Scholar
  14. 14.
    W. W. Webb (1990) inMICRO 90, IOP, London, pp. 445–450.Google Scholar
  15. 15.
    J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson (1992)Proc. Natl. Acad. Sci. 89, 1271–1275.Google Scholar
  16. 16.
    J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, K. W. Bendi and M. L. Johnson (1992)Anal. Biochem. 202, 316–330.Google Scholar
  17. 17.
    D. W. Piston, D. R. Sandison, and W. W. Webb (1992)Proc. SPIE 1640, 379–388.Google Scholar
  18. 18.
    A. Ansari and A. Szabo (1993)Biophys. J. 64, 838–851.Google Scholar
  19. 19.
    M. D. Galanin, B. P. Kirsanov, and Z. A. Chizhikova (1969)Sov. Phys. JETP Lett. 9, 502–507.Google Scholar
  20. 20.
    J. R. Lakowicz, V. Bogdanov, J. Kuśba, and I. Gryczynski (1994) in preparation.Google Scholar
  21. 21.
    J. R. Lakowicz, I. Gryczynski, V. Bogdanov, and J. Kuśba (1994)J. Phys. Chem. 98, 334–342.Google Scholar
  22. 22.
    I. Gryczynski, V. Bogdanov, and J. R. Lakowicz (1993) sub mitted for publication.Google Scholar
  23. 23.
    O. Svelto (1989) in D. C. Hanna (Trans. and Ed.),Principles of Lasers, 3rd ed., Plenum Press, New York, p. 52.Google Scholar
  24. 24.
    K. I. Rudik, L. G. Pikulik, L. P. Senkevich, M. Y. Kostko, and A. I. Maksimov (1976)Zh. Prikladnoi Spektrosk.25, 450–454 (translated).Google Scholar
  25. 25.
    Y. T. Mazurenko (1973)Opt. Spectrosc. 35, 137–139.Google Scholar
  26. 26.
    A. I. Butko, E. S. Voropai, V. A. Gaisenok, V. A. Saechnikov, and A. M. Sarzhevskii (1982)Opt. Spectrosc. 52, 153–156.Google Scholar
  27. 27.
    J. R. Lakowicz and B. P. Maliwal (1985)Biophys. Chem. 21, 61–78.Google Scholar
  28. 28.
    J. R. Lakowicz, G. Laczko, and I. Gryczynski (1986)Rev. Sci. Instrum. 57, 2499–2506.Google Scholar
  29. 29.
    G. Laczko, J. R. Lakowicz, I. Gryczynski, Z. Gryczynski, and H. Malak (1990)Rev. Sci. Instrum. 61, 2331–2337.Google Scholar
  30. 30.
    J. R. Lakowicz, H. Cherek, and A. Balter (1981)J. Biochem. Biophys. Methods 5, 131–146.Google Scholar
  31. 31.
    J. R. Lakowicz and I. Gryczynski (1993)Biophys. Chem.,47, 1–7.Google Scholar
  32. 32.
    A. I. Butko, E. S. Voropai, I. I. Zholnerevich, V. A. Saechnikov, and A. M. Sarzhevskii (1978)Invest. Akad. Nauk SSSR Ser. Fiz. 42, 626–630 (English translation, pp. 150–153).Google Scholar
  33. 33.
    P. Peretti and P. Ranson (1971)Opt. Comm. 3, 62–64.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Ignacy Gryczynski
    • 1
  • Valery Bogdanov
    • 2
  • Joseph R. Lakowicz
    • 1
  1. 1.Center for Fluorescence Spectroscopy and Department of Biological ChemistryUniversity of Maryland School of MedicineBaltimore
  2. 2.Vavilov State Optical InstituteSt. PetersburgRussia

Personalised recommendations