Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Fluorescence anisotropy decay study of self-association of bacterial luciferase intermediates

  • 71 Accesses

  • 6 Citations

Abstract

The fluorescence dynamics parameters of the fluorescent transient flavin-luciferase species from the typesVibrio fischeri andPhotobacterium leiognathi are presented. The fluorescence anisotropy decay is a single exponential function for both types. The correlation time is 70 ns for theP. leiognathi fluorescent transient intermediate (2°C, aqueous buffer, pH 7.0), consistent with the rotational correlation time of the luciferase macromolecule (77 kD) to which the flavin fluorophore is rigidly attached. In contrast, for theV. fischeri species the observed correlation time for the anisotropy decay function is 133 ns. This suggests that protein self-association occurs in theV. fischeri case and this is confirmed by filtration, where the fluorescent transient fromV. fischeri does not pass through a 100,000 molecular weight cutoff membrane, whereas theP. leiognathi species does. The filtration method also demonstrates self-association in the luciferase peroxyflavin and photoflavin fromV. fischeri. A monomer-dimer equilibrium also explains the previously reported high correlation times for theV. harveyi luciferase-flavin species. It is proposed that the self-association competes with the lumazine protein interaction in the bioluminescence reaction.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    L. Brand, J. R. Knutson, L. Davenport, J. M. Beechem, R. E. Dale, D. G. Walbridge, and A. A. Kowalczyk (1985) in P. M. Bayley and R. E. Dale (Eds.),Spectroscopy and the Dynamics of Molecular Biological Systems, Academic Press, London, pp. 259–305.

  2. 2.

    G. R. Fleming (1986)Chemical Applications of Ultrafast Spectroscopy, Oxford University Press, New York.

  3. 3.

    A. J. W. G. Visser, A. van Hoek, D. J. O'Kane, and J. Lee (1989)Eur. Biophys. J. 17, 75–85.

  4. 4.

    A. J. W. G. Visser, T. Ykema, A. van Hoek, D. J. O'Kane, and J. Lee (1985)Biochemistry 24, 1489–1496.

  5. 5.

    J. Lee (1985) in J. G. Burr (Ed.)Chemi- and Bioluminescence, Marcel Dekker, New York, pp. 401–437.

  6. 6.

    I. B. C. Matheson and J. Lee (1983)Photochem. Photobiol. 38, 231.

  7. 7.

    M. Kurfürst, S. Ghisla, and J. W. Hastings (1984)Proc. Natl. Acad. Sci. USA 81, 2990–2994.

  8. 8.

    J. W. Hastings and Q. H. Gibson (1963)J. Biol. Chem. 238, 2537.

  9. 9.

    J. Vervoort, F. Muller, J. Lee, W. A. M. van der Berg, and C. T. W. Moonen (1986)Biochemistry 25, 8062–8067.

  10. 10.

    C. Balny and J. W. Hastings (1975)Biochemistry 14, 4719.

  11. 11.

    J. Lee, Y. Wang, and B. G. Gibson (1990),Anal. Biochem. 185, 220–229.

  12. 12.

    J. Lee, D. J. O'Kane, and B. G. Gibson (1988)Biochemistry 27, 4862.

  13. 13.

    R. F. Swanson, L. H. Weaver, S. J. Remington, B. Matthews, and T. O. Baldwin (1985)J. Biol. Chem. 260, 1287–1288.

  14. 14.

    S.-J. Tu and J. W. Hastings (1975)Biochemistry 14, 4310–4316.

  15. 15.

    D. J. O'Kane and J. Lee (1985)Biochemistry 24, 1467.

  16. 16.

    D. J. O'Kane and J. Lee (1986).Methods Enzymol.,133, 149.

  17. 17.

    D. J. O'Kane, M. Ahmad, I. B. C. Matheson, and J. Lee (1986).Methods Enzymol.,133, 109–128.

  18. 18.

    J. Lee, D. J. O'Kane, and B. G. Gibson (1989)Biophys. Chem. 33, 99–111.

  19. 19.

    A. J. Cross and G. R. Fleming (1984)Biophys. J. 46, 45–46.

  20. 20.

    D. V. O'Connor and D. Phillips (1984)Time Correlated Single Photon Counting, Academic Press, London.

  21. 21.

    F. Müller (1983)Topics Curr. Chem.,108, 71–107.

  22. 22.

    M. M. Ziegler and T. O. Baldwin (1981)Curr. Top. Bioenerg. 12, 65–113.

  23. 23.

    A. Escher, D. J. O'Kane, J. Lee, and A. A. Szalay (1989)Proc. Natl. Acad. Sci. USA,86, 6528–6532.

  24. 24.

    J. Lee (1990) in H.-C. Curtius, S. Ghisla, and N. Blau (Eds.),Pteridines and Folic Acid Derivatives, Walter de Gruyter, Berlin, pp. 445–456.

  25. 25.

    M. Fayet and Ph. Wahl (1969)Biochim. Biophys. Acta 181, 373–380.

  26. 26.

    J. Lee, D. J. O'Kane, and B. G. Gibson (1989)Biochemistry 28, 4263.

  27. 27.

    J. Lee, Y. Wang, B. G. Gibson, and D. J. O'Kane (1990)Proc. Soc. Photo-Opt. Instr. Eng. 1204, 706–716.

  28. 28.

    J. Lee (1982)Photochem. Photobiol.,36, 689.

  29. 29.

    E. G. Ruby and K. H. Nealson (1977)Science 196, 432–434.

  30. 30.

    S. C. Daubner, A. M. Astorga, G. B. Leisman, and T. O. Baldwin (1987)Proc. Natl. Acad. Sci. USA 84, 8912–8916.

  31. 31.

    P. Macheroux, K. U. Schmidt, P. Steinerstauch, S. Ghisla, P. Colepicolo, R. Buntic, and J. W. Hastings (1987)Biochem. Biophys. Res. Commun. 146, 101–106.

  32. 32.

    D. J. O'Kane, B. Woodward, J. Lee, and D. Prasher (1991)Proc. Natl. Acad. Sci. USA, in press.

Download references

Author information

Correspondence to John Lee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, J., Wang, Y. & Gibson, B.G. Fluorescence anisotropy decay study of self-association of bacterial luciferase intermediates. J Fluoresc 1, 23–29 (1991). https://doi.org/10.1007/BF00865255

Download citation

Key Words

  • Fluorescence anisotropy
  • rotational correlation time
  • protein association
  • bacterial luciferase
  • bioluminescence