Advertisement

Estimate of the temperature field in a compressible medium

  • T. A. Butina
Article
  • 22 Downloads

Keywords

Mathematical Modeling Mechanical Engineer Temperature Field Industrial Mathematic Compressible Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Ya. B. Zel'dovich and Yu. G. Raiser, Shock Wave Physics and High-Temperature Hydrodynamic Phenomena [in Russian], Nauka, Moscow (1966).Google Scholar
  2. 2.
    V. N. Zharkov and V. A. Kalinin, Equations of State for Solids at a High Pressure and Temperature [in Russian], Nauka, Moscow (1968).Google Scholar
  3. 3.
    M. Rice, R. McQueen, and J. Walsh, Dynamic Investigation of Solids under High Pressure [Russian translation], Mir, Moscow (1965).Google Scholar
  4. 4.
    L. V. Al'tshuler, S. E. Busnikin, and E. A. Kuz'menko, “Isotherms and Grüneisen functions for 25 metals,” Prikl. Mekh. Tekh. Fiz., No. 1 (1987).Google Scholar
  5. 5.
    A. V. Bushman and V. E. Fortov, “Models of the equations of state of matter,” Usp. Fiz. Nauk,140, No. 2 (1983).Google Scholar
  6. 6.
    V. S. Trofimov, “Simple thermodynamic method of estimating the impact compression temperature of a condensed medium,” Fiz. Goreniya Vzryva, No. 4 (1973).Google Scholar
  7. 7.
    G. P. Men'shikov, “Equation of state for solids under high pressure,” Fiz. Goreniya Vzryva, No. 2 (1981).Google Scholar
  8. 8.
    A. A. Dolgov and M. Yu. Messinev, “Estimate of the temperature on the Hugoniot adiabat by means of the 'mirror reflection1 rule,” ', Prikl. Mekh. Tekh. Fiz., No. 5 (1981).Google Scholar
  9. 9.
    T. A. Butina, “Estimate of the potential pressure and temperature on the shock adiabat,” Fiz. Goreniya Vzryva, No. 4 (1989).Google Scholar
  10. 10.
    M. L. Wilkins, “Calculation of elastoplastic flow,” in: Computational Methods in Hydrodynamics [Russian translation], Mir, Moscow (1967).Google Scholar
  11. 11.
    B. Boly and A. D. Wainer, Thermal Stress Theory [Russian translation], Mir, Moscow (1964).Google Scholar
  12. 12.
    J. von Neumann and R. Richtmayer, “Method of numerical calculation of hydrodynamic shocks,” in: Mechanics [Russian translation], Vol. 1, Moscow (1951).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • T. A. Butina
    • 1
  1. 1.Kaliningrad

Personalised recommendations