Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Propagation of a signal in a liquid with a continuous distribution of bubble sizes

  • 31 Accesses

  • 1 Citations

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    S. V. Iordanskii, “Equations of motion of a liquid containing gas bubbles,” Prikl. Mekh. Tekh. Fiz., No. 3 (1960).

  2. 2.

    B. S. Kogarko, “One-dimensional unsteady motion of a liquid with cavitation,” Dokl. Akad. Nauk SSSR,155. No. 4 (1964).

  3. 3.

    L. Van Wijngaarden, “Equations of motion for mixtures of liquid and gas bubbles,” J. Fluid Mech.,33, Part 3 (1968).

  4. 4.

    R. I. Nigmatulin, Dynamics of Multiphase Media [in Russian], Nauka, Moscow (1987), Chaps. 1–2.

  5. 5.

    S. S. Kutateladze and V. E. Nakoryakov, Heat and Mass Transfer and Waves in Gas-Liquid Systems [in Russian], Nauka, Novosibirsk (1984).

  6. 6.

    E. A. Zabolotskaya, “Nonlinear waves in liquids with gas bubbles,” in: Nonlinear Wave Processes, Vol. 18, Tr. IOFAN, Nauka, Moscow (1989).

  7. 7.

    V. Sh. Shagapov, “Structure of shock waves in a polydispersed mixture of liquid and gas bubbles,” Izv. Akad. Nauk SSSR, Ser. Mekh. Zhidk. Gaza, No. 6 (1976).

  8. 8.

    V. K. Kedrinskii, “Peculiarities of bubble spectrum behavior in cavitation zone,” Proc. Int. Symp. Ultrasonic-85, London (1985).

  9. 9.

    V. G. Gasenko and V. L. Izergin, “Nonlinear waves and stochastization in a. polydisper-sive gas-liquid mixture,” Trans. 11th Int. Symp. on Nonlinear Acoustics, Part II, Inst. of Fluid Dynamics, Novosibirsk (1987).

  10. 10.

    Y. Matsumoto, H. Nishikawa, and H. Ohashi, “Numerical simulation of wave phenomena in a bubbly liquid,” Proc. 17th ICTAM, Grenoble, France (1985).

  11. 11.

    V. L. Izergin, “Complex solitary waves in polydispersed gas-liquid mixtures,” Izv. Akad. Nauk SSSR, Ser. Tekh. Nauk, No. 1 (1989).

  12. 12.

    S. L. Gavrilyuk, “Existence, uniqueness, and stability of traveling waves in a poly-dispersed bubbly medium with dissipation,” Partial Differential Equations, Inst. Math., Novosibirsk (1989).

  13. 13.

    S. L. Gavrilyuk and S. A. Fil'ko, “Shock waves in polydispersed bubbly media with dissipation,” Prikl. Mekh. Tekh. Fiz., No. 5 (1991).

  14. 14.

    V. K. Kedrinskii, “Propagation of disturbances in a liquid containing gas bubbles,” Prikl. Mekh. Tekh. Fiz., No. 4 (1968).

  15. 15.

    D. D. Ryutov, “Analog of Landau damping in a problem of sound propagation in a liquid with gas bubbles,” Piz'ma Zh. Eksp. Teor. Fiz.,22, No. 9 (1975).

  16. 16.

    I. A. Kotel'nikov and G. V. Stupakov, “Nonlinear effects in the propagation of sound waves in liquids with gas bubbles,” Zh. Eksp. Teor. Fiz.,84, No. 3 (1983).

  17. 17.

    A. O. Maksimov, “Nonlinear damping of a sound wave in a liquid with gas bubbles,” Zh. Tekh. Fiz.,56, No. 1 (1986).

  18. 18.

    N. A. Gumerov, “Equations for the propagation of long waves in polydispersed suspensions and bubbly liquids without phase transitions,” VINITI' 1991, No. 02.9.10004824, Moscow (1991).

  19. 19.

    S. L. Gavrilyuk, “Asymptotic solution of the Cauchy problem for the equations of propagation of linear waves in a liquid with a continuous distribution of bubble sizes,” Preprint, Inst. Fluid Dynamics, Novosibirsk (1991).

  20. 20.

    N. V. Malykh and I. A. Ogorodnikov, “Structure of pressure pulses,” J. Phys.,40, No. 11 (1979).

  21. 21.

    M. A. Lavrent'ev and B. V. Shabat, Methods of the Theory of Functions of a Complex Variable [in Russian], Nauka, Moscow (1987).

  22. 22.

    G. B. Whitham, Linear and Nonlinear Waves, Wiley Interscience, New York (1974).

Download references

Author information

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 4, pp. 54–60, July–August, 1992.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gavrilyuk, S.L. Propagation of a signal in a liquid with a continuous distribution of bubble sizes. J Appl Mech Tech Phys 33, 526–531 (1992). https://doi.org/10.1007/BF00864276

Download citation

Keywords

  • Mathematical Modeling
  • Mechanical Engineer
  • Industrial Mathematic
  • Continuous Distribution
  • Bubble Size