Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Modeling of silicon diffusion in gallium arsenide

1. Microscopic mechanisms of diffusion and a model of the transitions of silicon atoms between crystal sublattices

  • 38 Accesses

  • 2 Citations

Abstract

A model is developed and a study is performed for amphoteric diffusion of silicon in gallium arsenide. A comparison of predictions with experimental data indicated adequacy of the devised model and high efficiency of the numerical method for solving the diffusion equation.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    N. Einspruck and W. Wissman (eds.), Gallium Arsenide in Microelectronics [Russian translation], Moscow (1988).

  2. 2.

    D. B. DiLorenzo and J. J. Candeluol (eds.), Field-Effect Transistors Operating on Gallium Arsenide. Operating Principles and Manufacturing Process [Russian translation], Moscow (1988).

  3. 3.

    S. Zee, Physics of Semiconductor Instruments [Russian translation], Moscow (1984), Book 1.

  4. 4.

    S. Zee, Physics of Semiconductor Instruments [Russian translation], Moscow (1984), Book 2.

  5. 5.

    A. V. Chernyaev, Method of Ion Implantation in the Technology of Instruments and Integrated Microcircuits Operating on Gallium Arsenide [in Russian], Moscow (1990).

  6. 6.

    D. Miller (ed.), Modeling of Semiconductor Instruments and Technological Processes. Recent Advances [Russian translation], Moscow (1989).

  7. 7.

    S. Salakas and Z. Yanushkyavichus, Point Defects in Semiconductor Compounds [in Russian], Vilnius (1988).

  8. 8.

    J.-L. Lee, K.-H. Shim, J. S. Kim, et al., J. Appl. Phys.65, No. 1, 396–397 (1989).

  9. 9.

    D. G. Deppe, N. Jr. Holonyak, W. E. Piano, et al., Appl. Phys. Lett.,52, No. 2, 129–131 (1988).

  10. 10.

    T. Y. Tan and U. Gösete, Mater. Sci. Eng.,B1 No. 1, 47–65 (1988).

  11. 11.

    D. G. Deppe, N. Jr. Holonyak, W. E. Piano, et al., J. Appl. Phys.,64, No. 4, 1838–1844 (1988).

  12. 12.

    D. G. Deppe, N. Jr. Holonyak, F. A. Kish, and J. E. Baker, Appl. Phys. Lett.,50, No. 15, 998–1000 (1987).

  13. 13.

    J. J. Murray, M. D. Deal, and D. A. Stevenson, Appl. Phys. Lett.,56, No. 5, 472–474 (1990).

  14. 14.

    U. M. Gösele, Festkorper Probleme XXVI (1986), pp. 89–112.

  15. 15.

    F. Hyuga, J. Appl. Phys.,64, No. 8, 3880–3884 (1988).

  16. 16.

    R. A. Morrow, J. Appl. Phys.,64, No. 4, 1889–1896 (1988).

  17. 17.

    A. Goltzene et al., Phys. Stat. Solid: (b),123, No. 2, K125-K128 (1984).

  18. 18.

    H. J. Bardeleben and J. C. Bourgoin, Phys. Rev. B,33, No. 4, 2890–2892 (1986).

  19. 19.

    J. C. Bourgoin, von H. J. Bardeleben, and D. Stievenard, J. Appl. Phys.,64, No. 9, R65-R91 (1988).

  20. 20.

    V. V. Emtsev and T. V. Mahovets, Impurities and Point Defects in Semiconductors [in Russian], Moscow (1981).

  21. 21.

    V. I. Chebotin, Physical Chemistry of the Solid State [in Russian], Moscow (1982).

  22. 22.

    V. A. Labunov and O. I. Velichko, Inzh.-Fiz. Zh.,57, No. 5, 805–810 (1989).

Download references

Additional information

Belorussian State University, Minsk. Minsk Radio Engineering Institute. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 65, No. 5, pp. 567–572, November, 1993.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Velichko, O.I., Egorov, A.A. & Fedoruk, S.K. Modeling of silicon diffusion in gallium arsenide. J Eng Phys Thermophys 65, 1091–1096 (1993). https://doi.org/10.1007/BF00862038

Download citation

Keywords

  • Silicon
  • Experimental Data
  • Statistical Physic
  • Gallium
  • Diffusion Equation