Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Developmental renal hemodynamics

  • 46 Accesses

  • 13 Citations

Abstract

Renal blood flow, which is lower in the immature than in the mature animal, achieves adult values in human subjects by 1–2 years of age. The age-related increase in renal blood flow cannot be completely explained by increases in kidney size, since nephrogenesis is complete by 36 weeks' gestation in humans. Thus, other factors, especially changes in renal hemodynaics, are likely to be responsible for the increase in renal blood flow. The increase in renal blood flow appears to be directly related to the decrease in renal vascular resistance during the postnatal period. Decreases in the effect of renal vasoconstrictors, increases in the effect of renal vasodilators, or a combination of the two, may be responsible. Many mediators of vasoconstriction have been studied, including adenosine, catecholamines, endothelin, endogenous digitalis-like peptide, and the renin-angiotensin system. Mediators of vasodilation include endothelium-derived relaxing factor (e.g., nitric oxide), prostaglandins, atrial natriuretic peptide, dopamine, and kinins. However, the decrease in renal vascular resistance with age is most likely related to decreases in activity of the renin-angiotensin system and responsiveness to catecholamines; these effects are modulated by nitric oxide. Other mediators may also be important in determining the age-related decrease in renal vascular resistance, but their exact roles remain to be defined.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Jose PA, Haramati A, Fildes RD (1992) Postnatal maturation of renal blood flow. In: Polin RA, Fox WW (eds) Fetal and neonatal physiology. Saunders, Philadelphia, pp 1196–1200

  2. 2.

    Levinsky NG, Levy M (1973) Clearance techniques. In: Orloff J, Berliner RW (eds) Handbook of physiology, section 8: renal physiology. American Physiology Society, Washington, D.C., pp 103–117

  3. 3.

    Seikaly MG, Arant BS Jr (1992) Development of renal hemodynamics: glomerular filtration and renal blood flow. Clin Perinatal 19: 1–13

  4. 4.

    Corey HE, Spitzer A (1992) Renal blood flow and glomerular filtration rate during development. In: Edelmann CM Jr (ed) Pediatric kidney disease. 2nd edn. Little Brown, Boston, Toronto, London, pp 49–55

  5. 5.

    Calcagno PL, Rubin MI (1963) Renal extraction of para-aminohippurate in infants and children. J Clin Invest 42: 1632–1639

  6. 6.

    Fawer CL, Torrado A, Guignard JP (1979) Maturation of renal function in full term and premature neonates. Helv Paediatr Acta 34: 11–21

  7. 7.

    Robillard JE, Weismann DN, Herin P (1981) Ontogeny of single glomerular perfusion rate in fetal and newborn lambs. Pediatr Res 15: 1248–1255

  8. 8.

    Jose P, Logan A, Slotkoff L, Lilienfield L, Calcagno P, Eisner G (1971) Intrarenal blood flow distribution in canine puppies. Pediatr Res 5: 337–344

  9. 9.

    Seikaly MG, Arant BS Jr (1989) Developmental changes in renal blood flow and its intracortical distribution in conscious dogs (abstract). Kidney Int 35: 473

  10. 10.

    Corey HE, Spitzer A (1992) Renal blood flow and glomerular filtration rate during development. In: Edelmann CM Jr (ed) Pediatric kidney disease, 2nd edn. Little Brown, Boston, Toronto, London, pp 49–55

  11. 11.

    Gruskin AB, Edelmann CM Jr, Yuan S (1970) Maturational changes in renal blood flow in piglets. Pediatr Res 4: 7–13

  12. 12.

    Dworkin LD, Brenner BM (1991) The renal circulations. In: Brenner BM, Rector FC (eds) The kidney, 4th edn. Saunders, Philadelphia, pp 164–204

  13. 13.

    Jose PA, Slotkoff LM, Montgomery S, Calcagno PL, Eisner G (1975) Autoregulation of renal blood flow in the puppy. Am J Physiol 229: 983–938

  14. 14.

    Thurau K (1964) Renal hemodynamics. Am J Med 36: 698–719

  15. 15.

    Bayliss WM (1902) On the local reactions of the arterial wall to changes of internal pressures. J Physiol (Lond) 28: 220

  16. 16.

    Bailie MD (1992) Development of the endocrine function of the kidney. Clin Perinatal 19: 59–68

  17. 17.

    Yosipiv IV, Dipp S, El-Dahr SS (1994) Ontogeny of somatic angiotensin-converting enzyme. Hypertension 23: 369–374

  18. 18.

    Robillard JE, Weismann DN, Gomez RA, Ayres NA, Lawton WJ, VanOrden DE (1983) Renal and adrenal responses to converting enzyme inhibition in fetal and newborn life. Am J Physiol 244: R249-R256

  19. 19.

    Arant BS Jr, Seikaly MG (1989) Intrarenal angiotensin II may regulate developmental changes in renal blood flow (abstract). Pediatr Res 25: 334A

  20. 20.

    Osborn JL, Hook JB, Bailie MD (1980) Effect of saralasin and indomethacin on renal function in developing piglets. Am J Physiol 238: R438-R442

  21. 21.

    Solhaug MJ, Wallace M, Granger JP (1994) Regulation of renal hemodynamics by nitric oxide and angiotensin II in the developing piglet (abstract). Pediatr Res 35: 373A

  22. 22.

    Ciuffo GM, Viswanathan M, Sletzer AM, Tsutsumi K, Saavedra JM (1993) Glomerular angiotensin II receptor subtypes during development of rat kidney. Am J Physiol 265: F264-F271

  23. 23.

    Tufro-McReddie A, Harrison JK, Everett AD, Gomez RA (1993) Ontogeny of type I angiotensin II receptor gene expression in the rat. J Clin Invest 91: 530–537

  24. 24.

    Kakuchi J, Ichiki T, Kiyama S, Hogan BLM, Fogo A, Inagami T, Ichikawa I (1995) Developmental expression of renal angiotensin II receptor genes in the mouse. Kidney Int 47: 140–147

  25. 25.

    Fogo A, Yoshida Y, Yared A, Ichikawa I (1990) Importance of angiogenic action of angiotensin II in the glomerular growth of maturing kidneys. Kidney Int 38: 1068–1074

  26. 26.

    Shotan A, Widerhorn J, Hurst A, Elkayam J (1994) Risks of angiotensin-converting enzyme inhibition during pregnancy: experimental and clinical evidence, potential mechanisms, and recommendations for use. Am J Med 96: 451–456

  27. 27.

    Friberg P, Sundelin B, Bohman SO, Bobik A, Nilsson H, Wickman A, Gustafsson H, Petersen J, Adams MA (1994) Renin-angiotensin system in neonatal rats: induction of a renal abnormality in response to ACE inhibition or angiotensin II antagonism. Kidney Int 45: 485–492

  28. 28.

    Jose PA, Felder RA (1992) Renal nerves. In: Edelmann CM, Spitzer A (eds) Pediatric nephrology. 2nd edn, Little Brown, Boston, pp 297–325

  29. 29.

    Fildes RD, Eisner GM, Calcagno PL, Jose PA (1985) Renal alphaadrenoceptors and excretion in the dog. Am J Physiol 248: F128-F133

  30. 30.

    Solhaug MJ, Wallace MR, Adelman RD, Granger JP (1995) Interaction between nitric oxide and renal sympathetic nerves in the regulation of renal hemodynamics in the developing piglet (abstract). Pediatr Res 37: 371A

  31. 31.

    Robillard JE, Guillery EN, Segar JL, Merrill DC, Jose PA (1993) Influence of renal nerves on renal function during development. Pediatr Nephrol 7: 667–671

  32. 32.

    Jose P, Slotkoff L, Lilienfeld L, Calcagno P, Eisner G (1974) Sensitivity of the neonatal renal vasculature to epinephrine. Am J Physiol 226: 796–799

  33. 33.

    Guillery EN, Segar JL, Merrill DC, Nakamura KT, Jose PA, Robillard JE (1994) Ontogenic changes in renal response to α1B-andrenoceptor stimulation in sheep. Am J Physiol 267: R990-R998

  34. 34.

    Guillery EN, Porter CC, Page WV, Jose PA, Felder R, Robillard JE (1993) Developmental regulation of the α1B-andrenoceptor in the sheep kidney. Pediatr Res 34: 124–128

  35. 35.

    Ebara H, Suzuki S, Nagashima K, Shimano S, Kuroume T (1986) Digoxin-like immunoreactive substances in urine and serum from preterm and term infants: relationship to renal excretion of sodium. J Pediatr 108: 760–762

  36. 36.

    Kon V, Fogo A (1993) Endothelin: potential role in development and disease. Pediatr Nephrol 7: 876–880

  37. 37.

    Sulyok E, Ertl T, Adamovits K, Hovanyovskzky S, Rascher W (1993) Urinary endothelin excretion in the neonate: influence of maturity and perinatal pathology. pediatr Nephrol 7: 881–885

  38. 38.

    Semama DS, Thonney M, Guignard JP, Gouyon JB (1993) Effects of endothelin on renal function in newborn rabbits. Pediatr Res 34: 120–123

  39. 39.

    Semama DS, Thonney M, Guignard J-P (1993) Role of endogenous endothelin in renal haemodynamics of newborn rabbits. Pediatr Nephrol 7: 886–890

  40. 40.

    Matson JR, Stokes JB, Robillard JE (1981) Effects of inhibition of prostaglandin synthesis on fetal renal function. Kidney Int 20: 621–627

  41. 41.

    Judes C, Helwig J-J, Bollack C (1988) Effect of prostaglandin E2 on adenylate cyclase activity in isolated glomeruli and tubules during postnatal maturation of rat renal cortex. Biol Neonate 53: 113–120

  42. 42.

    Bensman A, Sraer J, Delarue F, Bens M, Vasmant D, Sraer JD (1987) Synthesis of prostaglandins and lipoxygenase products by rat glomeruli during development. Biol Neonate 52: 149–156

  43. 43.

    Mitchell MD, Lucas A, Etches Pc, Brunt JD, Turnbull AC (1978) Plasma prostaglandin levels during early neonatal life following term and pre-term delivery. Prostaglandins 16: 319–326

  44. 44.

    Ma YH, Gebremedhin D, Schwartzman ML, Falck JR, Clark JE, Masters BS, Harder DR, Roman RJ (1993) 20-Hydroxyeicosatetraenoic acid is an endogenous vasoconstrictor of canine renal arcuate arteries. Circ Res 72: 126–136

  45. 45.

    Palmer RM, Ferrige AG, Moncada SL (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524–526

  46. 46.

    Lahera V, Salom MG, Miranda-Guardiola F, Moncada S, Romero JC (1991) Effects ofN-nitro-l-arginine methylester on renal function and blood pressure. Am J Physiol 261: F1033-F1037

  47. 47.

    Solhaug MJ, Wallace MR, Granger JP (1993) Endothelium-derived nitric oxide modulates renal hemodynamics in the developing piglet. Pediatr Res 34: 750–754

  48. 48.

    Bogaert GA, Kogan BA, Mevorach RA (1993) Effects of endothelium-derived nitric oxide on renal hemodynamics and function in the sheep fetus. Pediatr Res 34: 755–761

  49. 49.

    Solhaug MJ, Wallace MR, Adelman RD, Granger JP (1995) Interaction between nitric oxide and renal sympathetic nerves in the regulation of renal hemodynamics in the developing piglet (abstract). Pediatr Res 37: 371A

  50. 50.

    Chevalier RL (1993) Atrial natriuretic peptide in renal development. Pediatr Nephrol 7: 652–656

  51. 51.

    Semmekrot B, Guignard JP (1991) Atrial natriuretic peptide during early human development. Biol Neonate 60: 341–349

  52. 52.

    Guignard JP, Gouyon JB, John EG (1991) Vasoactive factors in the immature kidney. Pediatr Nephrol 5: 443–446

  53. 53.

    Yamaji T, Hirai N, Ishibashi M, Takaku F, Yanaihara T, Nakayama T (1986) Atrial natriuretic peptide in umbilical cord blood: evidence for a circulating hormone in human fetus. J Clin Endocrinol Metab 63: 1414–1417

  54. 54.

    Semmekrot BA, Wiesel PH, Monnens LAH (1990) Age differences in renal response to atrial natriuretic peptide in rabbits. Life Sci 46: 849–856

  55. 55.

    Robillard JE, Nakamura KT, Varille VA, Anresen AA, Matherne GP, Van Orden DE (1988) Ontogeny of the renal response to natriuretic peptide in sheep. Am J Physiol 254: F634-F641

  56. 56.

    Jose PA, Raymond JR, Bates MD, Aperia A, Felder RA, Carey RM (1992) The renal dopamine receptors. J Am Soc Nephrol 2: 1265–1278

  57. 57.

    Gouyon JB, Guignard JP (1989) Adenosine in the immature kidney. Dev Pharmacol Ther 13: 113–119

  58. 58.

    Gouyon JB, Guignard JP (1989) Theophylline prevents the hypoxemia-induced renal hemodynamic changes in newborn and adult rabbits. Kidney Int 33: 1078–1083

  59. 59.

    (1994) Receptor and ion channel nomenclature, Trends Pharmacol Sci Suppl: 1–51

Download references

Author information

Correspondence to Lynne P. Yao.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yao, L.P., Jose, P.A. Developmental renal hemodynamics. Pediatr Nephrol 9, 632–637 (1995). https://doi.org/10.1007/BF00860962

Download citation

Key words

  • Renal blood flow
  • Renal vascular resistance
  • Development
  • Vasoactive hormones
  • Receptors
  • Signal transduction