Advertisement

Pediatric Nephrology

, Volume 9, Issue 1, pp 39–44 | Cite as

Urinary calcium and oxalate excretion in children

  • György S. Reusz
  • Mariann Dobos
  • Dennis Byrd
  • Péter Sallay
  • Miklós Miltényi
  • Tivadar Tulassay
Original Article

Abstract

We have established normal values for calcium/creatinine (Ca/Cr) and oxalate/creatinine (Ox/Cr) ratios in 25 infants (aged 1–7 days) and 391 children (aged 1 month to 14.5 years) and compared these with values obtained in 137 children with post-glomerular haematuria and 27 with nephrolithiasis. Oxalate was measured by ion chromatography. Nomograms of Marshall and Robertson were used to calculate urine saturation to calcium oxalate. The Ca/Cr ratio was normally distributed whereas the Ox/Cr ratio had a log-normal distribution. The molar ratio of Ca/Cr was the lowest in the first days of life and the highest between 7 month and 1.5 years (mean±SD=0.39±0.28 mmol/mmol). Following a slight decrease it stabilised by the age of 6 years (0.34±0.19 mmol/mmol). The highest Ox/Cr values were measured during the 1st month of life [geometric mean 133 (range 61–280) μmol/mmol], followed by a gradual decrease until 11 years of age [mean 24 (range 6–82) μmol/mmol]. Thirty-six haematuric children had hypercalciuria (26%), 23 had absorptive hypercalciuria, 13 renal type. Children with absorptive hypercalciuria on a calcium-restricted diet had significantly higher oxalate excretion than those with renal hypercalciuria and the control group [38 (range 28–49) vs. 22 (range 16–29) and 23 (range 22–27) μmol/mol respectively,P<0.01]. Calcium oxalate urine saturation of stone patients was higher than that of patients with haematuria and the normal population (1.18±0.05 vs. 1.06±0.03,P<0.03 and 0.84±0.03,P<0.001 respectively). The measurement of Ca/Cr and Ox/Cr in first-morning urine samples is suitable for screening for hypercalciuria and hyperoxaluria. Interpretation of the values requires age-specific reference values. Both calcium and oxalate determinations should be part of the evaluation of patients with haematuria, hypercalciuria or nephrolithiasis.

Key words

Calcium Oxalate Normal values Nephrolithiasis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Malek RS, Kelalis PP (1976) Pediatric urolithiasis. J Urol 113: 545–550Google Scholar
  2. 2.
    Walther PC, Lamm D, Kaplan GW (1980) Pediatric urolithiasis. A ten year review. Pediatrics 65: 1068–1072PubMedGoogle Scholar
  3. 3.
    Laufer J, Biochis H (1989) Urolithiasis in children: current medical management. Pediatr Nephrol 3: 317–331PubMedGoogle Scholar
  4. 4.
    Perrone HC, Santos DR dos, Santos MV, Pinheiro ME, Toporovski J, Ramos OL, Schor N (1992) Urolithiasis in childhood: metabolic evaluation. Pediatr Nephrol 6: 54–56PubMedGoogle Scholar
  5. 5.
    Roy S, Stapleton FB, Noe NH, Jerkins G (1981) Hematuria preceding renal stone formation in children with hypercalciuria. J Pediatr 99: 712–715PubMedGoogle Scholar
  6. 6.
    Noe NH, Stapleton FB, Jerkins G, Roy S (1983) Clinical experience with childhood urolithiasis. J Urol 129: 1166–1168PubMedGoogle Scholar
  7. 7.
    Stapleton FB, Jerkins G, Noe HN (1982) Hypercalciuria in children with urolithiasis. Am J Dis Child 136: 675–678PubMedGoogle Scholar
  8. 8.
    Kruse K, Kracht U, Kruse U (1984) Reference values for urinary calcium excretion and screening for hypercalciuria in children and adolescents. Eur J Pediatr 143: 25–31PubMedGoogle Scholar
  9. 9.
    Ghazali S, Barrat TM (1974) Urinary excretion of calcium and magnesium in children. Arch Dis Child 49: 97–101PubMedGoogle Scholar
  10. 10.
    Paunier L, Borgeaud M, Wyss M (1970) Urinary excretion of magnesium and calcium in normal children. Helv Paediatr Acta 25: 577–584PubMedGoogle Scholar
  11. 11.
    De Santo NG, Ioro BD, Capasso G, Padiano C, Stamler R, Langman CB, Stamler J (1992) Population based data on urinary excretion of calcium, magnesium oxalate, phosphate and uric acid in children from Cimitile (southern Italy). Pediatr Nephrol 6: 149–157PubMedGoogle Scholar
  12. 12.
    Robertson WG, Peacock M (1980) The cause of idiopathic calcium stone disease: hypercalciuria or hyperoxaluria? Nephron 26: 105–110PubMedGoogle Scholar
  13. 13.
    Landsjö M, Danielson BG, Fellström B, Ljunghall S (1989) Intestinal oxalate and calcium absorption in recurrent renal stone formers and healthy subjects. Scand J Urol Nephrol 23: 55–59PubMedGoogle Scholar
  14. 14.
    Small H, Stevens T, Baumann W (1975) Novel ion exchange chromatographic method using conductimetric method. Anal Chem 47: 1801–1810Google Scholar
  15. 15.
    Mahle CJ, Menon M (1982) Determination of urinary oxalate by ion chromatography: preliminary observation. J Urol 127: 159–162PubMedGoogle Scholar
  16. 16.
    Kasidas GP, Rose GA (1985) Continuous-flow assay for urinary oxalate using immobilized oxalate oxidase. Ann Clin Biochem 22: 412–419PubMedGoogle Scholar
  17. 17.
    Reusz G, Tulassay T, Szabó A, Tausz I, Miltényi M (1986) Studies on the urinary calcium excretion in children with haematuria of postglomerular origin: effects of the variation of dietary calcium and sodium intake. Int J Pediatr Nephrol 7: 221–226PubMedGoogle Scholar
  18. 18.
    Reusz GS, Dobos M, Tulassay T, Miltényi M (1993) Hydrochlorothiazide treatment of children with hypercalciuria: effects and side effects. Pediatr Nephrol 7: 699–702PubMedGoogle Scholar
  19. 19.
    Reusz GS, Tulassay T, Miltényi M (1988) Differentiation of glomerular and non-glomerular haematuria. Lancet II: 50–51Google Scholar
  20. 20.
    Schnackenburg C, Byrd DJ, Latta K, Reusz GS, Graf D, Brodehl J (1994) Determination of oxalate excretion in spot urines of healthy children by ion chromatography. Eur J Chem Clin Biochem 32: 27–29Google Scholar
  21. 21.
    Farrington CJ, Chalmers AH (1979) Gas-chromatographic estimation of urinary oxalate and its comparison with a colorimetric method. Clin Chem 25: 1993–1996PubMedGoogle Scholar
  22. 22.
    Reusz GS, Latta K, Hoyer PF, Byrd DJ, Ehrich JHH, Brodehl J (1990) Evidence suggesting hyperoxaluria as a cause of nephrocalcinosis in phosphate treated hypophosphatemic rickets. Lancet 335: 1240–1243PubMedGoogle Scholar
  23. 23.
    Marshall RW, Robertson WG (1976) Nomograms for the estimation of the saturation of urine with calcium oxalate, calcium phosphate, magnesium ammonium phosphate, uric acid, sodium acid urate, ammonium acid urate and cystine. Clin Chim Acta 72: 253–260PubMedGoogle Scholar
  24. 24.
    Barrat TM, Kasidas GP, Murdoch I, Rose GA (1991) Urinary oxalate and glycolate excretion and plasma oxalate concentration. Arch Dis Child 66: 501–503PubMedGoogle Scholar
  25. 25.
    Leumann EP, Dietl A, Matovic A (1990) Urinary glycolate and oxalate excretion in healthy infants and children. Pediatr Nephrol 4: 493–497PubMedGoogle Scholar
  26. 26.
    Moore ES, Coe FL, MCMann BJ, Favus MJ (1978) Idiopathic hypercalciuria in children: prevalence and metabolic evaluation. J Pediatr 92: 906–910PubMedGoogle Scholar
  27. 27.
    Sargent JD, Stukel TA, Kresel J, Klein RZ (1993) Normal values for random urinary calcium to creatinine ratios in infancy. J Pediatr 123: 393–397PubMedGoogle Scholar
  28. 28.
    Coe FL, Bushinsky DA (1984) Pathophysiology of hypercalciuria. Am J Physiol 247: F1-F3PubMedGoogle Scholar
  29. 29.
    Stapleton FB (1990) Idiopathic hypercalciuria: association with isolated hematuria and risk for urolithiasis in children. Kidney Int 37: 807–811PubMedGoogle Scholar
  30. 30.
    Pak CY (1989) Calcium metabolism. J Am Coll Nutr 8 [Suppl]: 4 46S-53SPubMedGoogle Scholar
  31. 31.
    Coe FL, Parks JH, Moore ES (1979) Familial idiopathic hypercalciuria. N Engl J Med 300: 337–340PubMedGoogle Scholar
  32. 32.
    Méhes K, Szelíd Z (1980) Autosomal dominant inheritance of hypercalciuria. Eur J Pediatr 133: 239–242PubMedGoogle Scholar
  33. 33.
    Harangi F, Mehes K (1993) Family investigations in idiopathic hypercalciuria. Eur J Pediatr 152: 64–68PubMedGoogle Scholar
  34. 34.
    Voskaki I, AI Qadreh A, Mengreli CH, Sbyrakis S (1992) Effect of hydrochlorothiazide on renal hypercalciuria. Child Nephrol Urol 12: 6–9PubMedGoogle Scholar
  35. 35.
    Lalau JD, Achard JM, Bataille P, Bergot C, Jans I, Boudailliez B, Petit-J, Henon G, Westeel PF, Esper N el, et al (1992) Densite vertebrale des lithiasiques hypercalciuriques. Sa relation avec les apports calciques et proteiques et le metabolisme de la vitamine D. Ann Med Interne (Paris) 143: 293–298Google Scholar
  36. 36.
    Pietschmann F, Breslau NA, Pak CY (1992) Reduced vertebral bone density in hypercalciuric nephrolithiasis. J Bone Miner Res 7: 1383–1388PubMedGoogle Scholar
  37. 37.
    Kalia A, Travis LB, Brouhard BH (1981) The association of idiopathic hypercalciuria and asymptomatic gross hematuria in children. J Pediatr 99: 716–719PubMedGoogle Scholar
  38. 38.
    Stapleton FB, Roy S, Noe N, Jerkins G (1984) Hypercalciuria in children with hematuria. N Engl J Med 310: 1345–1348PubMedGoogle Scholar
  39. 39.
    Watts RWE (1989) Factors governing urinary tract stone disease. Pediatr Nephrol 3: 332–340PubMedGoogle Scholar
  40. 40.
    Werness PE, Brown CM, Smith LH, Finlayson B (1985) EQUIL2: a basic computer program for the calculation of urinary saturation. J Urol 134: 1242–1244PubMedGoogle Scholar

Copyright information

© IPNA 1995

Authors and Affiliations

  • György S. Reusz
    • 1
  • Mariann Dobos
    • 1
  • Dennis Byrd
    • 2
  • Péter Sallay
    • 1
  • Miklós Miltényi
    • 1
  • Tivadar Tulassay
    • 1
  1. 1.First Department of PaediatricsSemmelweis University Medical SchoolBudapestHungary
  2. 2.Laboratory of Paediatric Nephrology and Metabolic DiseasesMedical SchoolHannoverGermany

Personalised recommendations