Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Electron diffraction investigation of the fracture surfaces of filled mixtures of SKS-85 butadiene-styrene copolymer

  • 14 Accesses

Abstract

As the result of an electron microscope study of replicas from the fracture surface during the disintegration of samples of mixtures of SKS-85 butadiene-styrene copolymer with 20 vol.% DG-100 carbon black and chalk, in the temperature range from +60 to −60°C, it is shown that, in the region of vitrification of the copolymer and of the loss of the reinforcing effect of the carbon black, there is a sharp change in the character of the fracture micro-surface, and the particles of carbon black become the sites of additional fracture. In the region of the temperature transition of the copolymer, connected with the mobility of the phenyl groups in the same way as in the vitrification region, there is a sharp decrease in the number of particles of carbon black at the fracture surface, while the fracture surface of a mixture with chalk passes selectively along the contact boundary of a polymer with larger particles. The microstructure of the Wallner lines on the surface of a mixture with carbon black, at T<Tst, is made up of traces of secondary fracture, arising around the particles of carbon black.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    V. E. Gul', The Strength of Polymers [in Russian], Moscow (1964).

  2. 2.

    V. E. Gul' and I. M. Chernin, Dokl, Akad. Nauk,123, 713 (1958).

  3. 3.

    V. E. Gul' and I. M. Chernin, VMS,2, 1613 (1960).

  4. 4.

    M. N. Tolmacheva, V. G. Raevskii, T. A. Pirko, and V. E. Gul', Mekhan. Polim., No. 2, 257 (1969).

  5. 5.

    V. G. Raevskii, M. N. Tolmacheva, and L. V. Makarskaya, Mekhan. Polim., No. 6, 98 (1965).

  6. 6.

    V. G. Raevskii, M. N. Tolmacheva, and V. E. Gul', Mekhan. Polim., No. 4, 579 (1969).

  7. 7.

    A. Smekal, Naturwiss.,15, 106 (1936); J. Soc. Glass Technol.,20, 432 (1936).

  8. 8.

    H. Wallner, Z. Phys.,114, 368 (1939).

  9. 9.

    V. G. Raevskii, M. N. Tolmacheva, and V. E. Gul', Dokl. Akad. Nauk,177, 883 (1967).

  10. 10.

    E. H. Andrews and A. Walsh, Nature,179, 729 (1957); Proc. Roy. Soc.,72, 42 (1958); J. Polym. Sci.,33, 38 (1958).

  11. 11.

    K. A. Pechkovskaya, Carbon Black as a Reinforcing Agent for Rubber [in Russian], Moscow (1968).

  12. 12.

    F. Kerhof, Naturwiss.,40, 478 (1959); Glastechn. Ber.,29, 459;31, 377 (1958).

  13. 13.

    E. H. Andrews, J. Appl. Phys.,30, 740 (1959).

  14. 14.

    S. S. Voyutskii, Autogenesis and Adhesion of Polymers [in Russian], Moscow (1960).

  15. 15.

    A. N. Kamenskii, S. M. Yagyatinskaya, V. G. Raevskii, N. A. Peregudova, N. M. Fodiman, and S. S. Voyutskii, Mekhan. Polim. No. 2, 291 (1967).

  16. 16.

    J. Kruse, Koll. Z.,122, 65 (1957).

Download references

Additional information

Moscow Institute of Technology for the Meat and Dairy Industry. M. V. Lomonosov Institute for the Technology of Fine Chemicals, Moscow. É. L. Ter-Gazaryan State Scientific-Research and Design Institute, Kirovakan. Translated from Mekhanika Polimerov, No. 3, pp. 437–444, May–June, 1970.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tolmacheva, M.N., Kamenskii, A.N., Raevskii, V.G. et al. Electron diffraction investigation of the fracture surfaces of filled mixtures of SKS-85 butadiene-styrene copolymer. Polymer Mechanics 6, 373–381 (1970). https://doi.org/10.1007/BF00858196

Download citation

Keywords

  • Microstructure
  • Phenyl
  • Fracture Surface
  • Large Particle
  • Electron Diffraction