Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Evolution and interaction of three-dimensional vortex clusters

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge Univ. Press (1973).

  2. 2.

    P. H. Roberts, “A Hamiltonian theory for weakly interacting vortices,” Mathematika,19, No. 1 (1970).

  3. 3.

    G. A. Kuz'min and A. Z. Patashinskii, “Tensor characteristics of coherent vortex structures,” Zh. Prikl. Mekh. Tekh. Fiz., No. 5 (1986).

  4. 4.

    A. Sattar, “About transverse vortex rings that can be used as elements of turbulence,” Bull. Classe Sci. Acad. Roy. Belg.,67, No. 7 (1984).

  5. 5.

    G. Beitman and A. Érdelyi, Higher Transcendental Functions (California Institute of Technology H. Bateman Manuscript Project), 3 vols., McGraw-Hill, New York (1953, 1955).

  6. 6.

    P. G. Saffman, “The velocity of viscous vortex rings,” Stud. Appl. Math.,49, No. 1 (1970).

  7. 7.

    G. S. Deem and N. J. Zabusky, “Vortex waves: stationary ‘v states,’ interactions, recurrence, and breaking,” Phys. Rev. Lett.,40, No. 13, 859–862 (1978).

  8. 8.

    H. Viets and P. M. Sforza, “Dynamics of bilaterally symmetric vortex rings,” Phys. Fluids,15, No. 2 (1972).

  9. 9.

    B. A. Lugovtsov, “Motion of a turbulent vortex ring and the transport of a passive impurity by it,” in: Selected Problems in Mathematics and Mechanics [in Russian], Nauka, Leningrad (1970).

  10. 10.

    T. Maxworthy, “Turbulent vortex rings,” J. Fluid Mech.,64, No. 2 (1974).

Download references

Author information

Additional information

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 44–48, March–April, 1991.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kuz'min, G.A. Evolution and interaction of three-dimensional vortex clusters. J Appl Mech Tech Phys 32, 184–188 (1991).

Download citation


  • Vortex
  • Mathematical Modeling
  • Mechanical Engineer
  • Industrial Mathematic
  • Vortex Cluster