Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Statistical interpretation of the temperature and stress shift factors

  • 18 Accesses


Expressions for the temperature and stress shift factors are derived on the basis of a statistical-probability treatment of the segmental motion of the macromolecules using the theory of energy level transitions. It is shown that in the general case the temperature shift factor should depend on stress, and the stress shift factor on temperature.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    J. D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York (1961).

  2. 2.

    Yu. S. Urzhumtsev, "Prediction of the deformation and fracture processes of polymeric materials," Mekh. Polim., No. 3, 498–514 (1972).

  3. 3.

    Yu. S. Urzhumtsev, "Time-temperature superposition," Mekh. Polim., No. 1, 66–83 (1975).

  4. 4.

    Yu. S. Urzhumtsev and R. D. Maksimov, "Stress-time superposition in nonlinear viscoelasticity," Mekh. Polim., No. 2, 379–381 (1968).

  5. 5.

    H. Brody, "Stress-time superposition as an aid to creep evaluation," Plastics and Polymers,87, No. 127, 21–25 (1969).

  6. 6.

    D. L. Martin, Jr., "Effect of filler concentration on the viscoelastic response of a filled polymer system," Proc. US Army Conf. West Point, 1, 211–226 (1965).

  7. 7.

    V.-P. Pekarskas and V. L. Rayatskas, "Use of concentration-temperature superposition for predicting the strength of polymer glued joints," Mekh. Polim., No. 1, 168–170 (1974).

  8. 8.

    A. J. Kovacs, "Applicability of the free volume concept to the relaxation phenomena in the glass transition," Rheol. Acta,5, No. 4, 262–269 (1966).

  9. 9.

    A. K. Malmeister, V. P. Tamuzh, and G. A. Teters, Strength of Rigid Polymeric Materials [in Russian], 2nd ed., Riga (1972).

  10. 10.

    A. K. Malmeister, "Statistical interpretation of rheological equations," Mekh. Polim., No. 2, 197–213 (1966).

  11. 11.

    Yu. S. Urzhumtsev, "Variant of the statistical interpretation of the formation of viscoelastic strains in polymers," Mekh. Polim., No. 3, 392–396 (1973).

  12. 12.

    S. B. Ainbinder, K. I. Alksne, M. G. Laka, and E. L. Tyunina, Properties of Polymers at High Pressures [in Russian], Moscow (1973).

  13. 13.

    I. M. Ward, Mechanical Properties of Solid Polymers, Wiley-Interscience (1971).

  14. 14.

    G. M. Bartenev, "Relation between the viscoelasticity and fracture processes of noncrystalline polymers," in: Relaxation Phenomena in Polymers [in Russian], Leningrad (1972), pp. 76–78.

  15. 15.

    Ch. L. Daugste, "Combined use of time-temperature and stress-time superposition for constructing generalized curves," Mekh. Polim., No. 3, 427–431 (1974).

  16. 16.

    V. V. Kovriga, I. G. Kuznetsova, M. L. Lebedinskaya, and E. G. Lur'e, "Methods of predicting the deformation properties of plastics," Plast. Massy, No. 4, 60–63 (1973).

  17. 17.

    Yu. M. Molchanov and G. A. Andrikson, "Thermodynamic determination of the shift factor. 1. Temperature shift factor," Mekh. Polim., No. 6, 1001–1010 (1973).

Download references

Additional information

Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 3, pp. 528–531, May–June, 1976.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kerch, G.M., Irgen, L.A. Statistical interpretation of the temperature and stress shift factors. Polymer Mechanics 12, 482–484 (1976). https://doi.org/10.1007/BF00857726

Download citation


  • Energy Level
  • Macromolecule
  • Temperature Shift
  • Segmental Motion
  • Level Transition