Advertisement

Polymer Mechanics

, Volume 7, Issue 6, pp 889–892 | Cite as

Instability at the interface of bodies subjected to high-elastic deformations

  • A. N. Guz'
Article
  • 17 Downloads

Abstract

The problem of instability at the interface of two elastic half-planes in compression is investigated within the framework of the plane problem of the stability of deformation of compressible and incompressible elastic bodies at finite subcritical strains [1, 2]. The results are obtained for the plane deformation of bodies with an arbitrary form of the elastic potential. Numerical examples are presented for high-elastic bodies with potentials of the Mooney and Treloar types.

Keywords

Plane Problem Elastic Body Plane Deformation Elastic Potential Arbitrary Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. E. Green and J. E. Adkins, Large Elastic Deformations and Nonlinear Continuum Mechanics, Oxford University Press (1960).Google Scholar
  2. 2.
    A. E. Green, R. S. Rivlin, and R. T. Shield, Proc. Roy. Soc.,A211, 1104, 128 (1952).Google Scholar
  3. 3.
    A. N. Guz', Prikl. Matem. i Mekhan.,34, 1113 (1970).Google Scholar
  4. 4.
    A. N. Guz', Mekhan. Polim., No. 6, 1107 (1970).Google Scholar
  5. 5.
    V. V. Novozhilov, Fundamentals of the Nonlinear Theory of Elasticity [in Russian], Moscow (1948).Google Scholar
  6. 6.
    M. A. Biot, Proc. Roy. Soc.,A273, 1354, 329.Google Scholar
  7. 7.
    M. A. Biot, Proc. Roy. Soc.,A273, 1354, 340.Google Scholar
  8. 8.
    Z. Wesolowski, Zesz. Nauk. Politechniki Warszawskiej, 65. Mechanika,9, 145 (1962).Google Scholar
  9. 9.
    V. L. Biderman, Ivz. Akad. Nauk SSSR. Mekhan. Tverd. Tela, No. 3, 54 (1968).Google Scholar
  10. 10.
    M. A. Biot, Mechanics of Incremental Deformations, New York (1965).Google Scholar

Copyright information

© Consultants Bureau, a division of Plenum Publishing Corporation 1974

Authors and Affiliations

  • A. N. Guz'

There are no affiliations available

Personalised recommendations