Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Growth of a nanosecond pulsed discharge in a gas with one-electron initiation

  • 38 Accesses

  • 1 Citations

Abstract

Pulse breakdown on gaps of millimeter order at substantial overvoltages is explained in terms of a discharge mechanism involving photoelectric emission from the cathode followed by collisional multiplication in the gas to give avalanches. The mechanism is used to deduce a theoretical equation for the time of discharge buildup in one-electron mutation, which is compared with experiment.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    H. Retter, Electron Avalanches in Gases [Russian translation], Mir, Moscow (1968).

  2. 2.

    R. C. Fletcher, “Impulse breakdown in the 10−9 sec range of air at atmospheric pressure,” Phys. Rev.,76, No. 10, 1501–1511 (1949).

  3. 3.

    Yu. E. Nesterikhin, V. S. Komel'kov, and E. Z. Meilikhov, “Pulse breakdown of short gaps on the nanosecond time range,” Zh. Tekh. Fiz.,34, No. 1, 40–52 (1964).

  4. 4.

    G. A. Mesyats and Yu. I. Bychkov, “A statistical study of nanosecond delay in breakdown of short gaps in very strong fields,” Zh. Tekh. Fiz.,37, No. 9, 1712 (1967).

  5. 5.

    G. A. Mesyats, Yu. I. Bychkov, and A. M. Iskol'dskii, “Nanosecond discharge buildup times in short air gaps,” Zh. Tekh. Fiz.,38, No. 8, 1281–1287 (1968).

  6. 6.

    G. A. Mesyats, V. V. Kremnev, G. S. Korshunov, and Yu. B. Yankelevich, “Current and voltage in sparks in nanosecond impulse breakdown of a gas gap,” Zh. Tekh. Fiz.,39, No. 1, 75–81 (1969).

  7. 7.

    L. G. Bychkova, Yu. I. Bychkov, and G. A. Mesyats, “Marked increase in breakdown delay in gas gaps in strong electric fields,” Izv. VUZ, Fizika, No. 2, 36–39 (1969).

  8. 8.

    L. G. Bychkova, Yu. I. Bychkov, G. A. Mesyats, and Ya. Ya. Yurcke, “An electron-optical study of discharge growth in a gas with one-electron initiation at high fields,” Izv. VUZ, Fizika, No. 11, 24–27 (1969).

  9. 9.

    V. V. Vorob'ev and A. M. Iskol'dskii, “Impulse breakdown in a uniform field in air at high over-voltages,” Zh. Tekh. Fiz.,36, No. 11, 2095–2098 (1966).

  10. 10.

    G. A. Mesyats, A. M. Iskol'dskii, V. V. Kremnev, L. G. Bychkova, and Yu. I. Bychkov, “Primary and secondary processes in nanosecond discharge growth in short gas gaps,” Zh. Prikl. Mekhan. i Tekh. Fiz., No. 3, 77–81 (1968).

  11. 11.

    A. V. Gurevich, “Some features of ohmic heating of the electron gas in a plasma,” Zh. Éksp. Teor. Fiz.,38, No. 1, 116–121 (1960).

  12. 12.

    H. Tholl, “Zur Entwicklung einer Elektronenlawine bei Überspannung in Stickstoff, Teil 1,” Z. Naturforsch.,19a, No. 3, 346 (1964).

  13. 13.

    L. Loeb, Electrical Discharges in Gases [Russian translation], Gostekhteorizdat, Moscow (1950).

  14. 14.

    H. Schlumbohm, “Stossionisierungskoeffizient α, mittlere Elektronenenergien und die Beneglichkeit von Elektronen in Gasen,” Z. Physik,184, 492 (1965).

  15. 15.

    H. Schlumbohm, “Mesung der Driftgeschwindigkeiten von Elektronen und positiven Ionen in Gasen,” Z. Physik,182, 317 (1965).

  16. 16.

    W. Legler, “Über die UV-Strahlung von Elektronenlawinen in Luft,” Z. Physik,143, No. 2, 173–190 (1955).

  17. 17.

    Yu. L. Stankevich, “The initial stage of an electrical discharge in a dense gas,” Zh. Tekh. Fiz.,40, No. 7, 1476 (1970).

Download references

Author information

Additional information

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 40–45, January–February, 1971.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kremnev, V.V., Mesyats, G.A. Growth of a nanosecond pulsed discharge in a gas with one-electron initiation. J Appl Mech Tech Phys 12, 33–37 (1971). https://doi.org/10.1007/BF00853979

Download citation

Keywords

  • Mathematical Modeling
  • Mechanical Engineer
  • Industrial Mathematic
  • Discharge Mechanism
  • Pulse Discharge