Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Technological fundamentals of SHS compacting

  • 43 Accesses

  • 2 Citations

Abstract

Different versions of the shock-wave treatment of SHS systems are considered. It is shown that a combination of SHS with explosive compaction is the most promising method as regards development of new materials. This method was used to produce high-density materials with diverse properties such as refractory hard alloys, high-temperature superconductors, etc. The method allows the structure formation to be controlled during the material synthesis, and this is demonstrated by producing fine-grained ceramics.

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    A. G. Merzhanov and I. P. Borovinskaya, Dokl. Akad. Nauk SSSR204, No 2 (1972).

  2. 2.

    A. G. Merzhanov, Self-Propagating High-Temperature Synthesis: Two Decades of Search and Findings (Preprint, Inst. Struct. Macrokinetics), Chernogolovka (1989).

  3. 3.

    D. S. Rainhart and D. Pearson, Explosive Treatment of Metals [Russian translation], Moscow (1990).

  4. 4.

    R. Prummer, Explosive Treatment of Power Metals [Russian translation], Moscow (1990).

  5. 5.

    V. M. Fedorov and Yu. A. Gordopolov, Studies of Explosive Compaction of SHS Ceramic HTSC (Preprint, Inst. Struct. Macrokinetic), Chernogolovka (1990).

  6. 6.

    V. M. Fedorov and Yu. A. Gordopolov, Shock-Wave Compacting of SHS Ceramic HTSP (Preprint, Inst. Struct. Macrokinetic), Chernogolovka (1990).

  7. 7.

    Yu. A. Gordopolov and V. M. Fedorov, Composite Materials of HTSC Ceramic Metal Stratified Titanium Produced by Explosive Compaction. Thermosynthesis Exhibition at the EEA USSR (“Resource Saving” Promotion Issue) (1990).

  8. 8.

    D. E. Maiden, G. Bianchini, H. Horing, and D. Kingman, Proc. DARPA/ARMY SHS Symp., Daytona Beach, Florida (1985).

  9. 9.

    Yu. A. Gordopolov, R. V. Shikhverdiev, I. V. Molokov, Yu. V. Bogatov, I. P. Borovinskaya., and A. G. Merzhanov, Studies of Shock-Wave Loading of Heated Reaction Products in Combustion Wave Synthesis of Refractory Alloys (Preprint, Inst. Struct. Macrokinetics), Chernogolovka (1988).

  10. 10.

    Yu. A. Gordopolov, R. M. Shikhverdiev, I. V. Molokov, Yu. V. Bogatov, I. P. Borovinskaya, and A. G. Merzhanov, “The shock wave effect on the structure formation of combustion synthesized refractory hard alloys”, 7th Int. Symp. on Explos. Treatment of Materials, Pardubice, Coll. Papers Vol. 2 (1988).

  11. 11.

    Yu. A. Gordopolov, V. M. Fedorov, I. V. Molokov, R. M. Shikhverdiev, and A. G. Merzhanov, “Explosive treatment of SHS-products”, 10th Int. Conf. High-Power Action on Materials. Lublana, Coll. Papers (1989).

  12. 12.

    Yu. A. Gordopolov, I. V. Molokov, R. M. Shikhverdiev, A. N. Pilyutin, O. Yu. Efimov, N. G. Zaripov, and L. V. Petrova, “Studies of shock-wave loading in combustion synthesis of refractory hard alloys”, Proc. 16th All-Union Scientific Conf. Powder Metallurgy, Sverdlovsk (1989).

  13. 13.

    Yu. A. Gordopolov and A. G. Merzhanov, “The use of shock waves in the SHS research”, Proc. 13th Int. Colloq. on Dynamics of Explosions and Reactive Systems, Nagoya (1991).

  14. 14.

    I. V. Molokov and A. S. Mukasyan, “Application of explosive action for SHS of gas—solid systems study”, Proc. 1st Int. Symp. on SHS, Alma-Ata (1991).

  15. 15.

    R. M. Shikhverdiev, R. R. Kudashev, O. Yu. Efimov, N. G. Zaripov, and Yu. A. Gordopolov, “The shock-wave effect on Ti-C SHS system”, Proc. 1st Int. Symp. on SHS, Alma-Ata (1991).

  16. 16.

    A. Niiler, L. J. Kecskes, T. Kottke, P. H. Netherwood, and R. F. Benck, Ballistic Research Laboratory Report No. RBL-TR-2951, Aberdeen Proving Ground (1988).

  17. 17.

    A Niiler, L. J. Kecskes, and T. Kottke, in: Combustion and Plasma Synthesis of High-Temperature Materials. Z. A. Munir and J. B. Holt eds., VCH Publishers (1990).

  18. 18.

    A. Niiler, L. J. Kecskes and T. Kottke, Proc. 1st U.S.-Japanese Workshop on Combustion Synthesis, Japan (1990).

  19. 19.

    H. A. Grebe, A. Advani, N. N. Thadhani, and T. Kottke, Proc. TMS Symp. on Reaction Synthesis of Materials, New Orleans (1991).

  20. 20.

    B. H. Rabin, G. E. Korth, and R. L. Williamson, J. Am. Ceram. Soc.,73, No. 7 (1990).

  21. 21.

    G. A. Adadurov, Usp. Khim.,50, No. 10 (1981).

  22. 22.

    G. A. Adadurov, Usp. Khim.,55, No. 4 (1986).

  23. 23.

    T. Akashi and A. B. Sawaoka, Advan. Ceram. Mater.,3, No. 3 (1988).

  24. 24.

    T. Akashi and A. B. Sawaoka, Kogyo Kayaku49, No. 4 (1988).

  25. 25.

    T. Akashi and A. B. Sawaoka, U. S. Patent, No. 4.655.830, Apr. 7, 1987.

Download references

Additional information

Deceased.

Institute for Structural Macrokinetics, Russian Academy of Sciences, Chernogolovka. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 63, No. 5, pp. 538–546, November, 1992.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Adadurov, G.A., Borovinskaya, I.P., Gordopolov, Y.A. et al. Technological fundamentals of SHS compacting. J Eng Phys Thermophys 63, 1075–1081 (1992). https://doi.org/10.1007/BF00853503

Download citation

Keywords

  • Statistical Physic
  • Explosive
  • Compaction
  • Structure Formation
  • Promising Method