Advertisement

Vibrations of an orthotropic half-plane with a cavity

  • A. 0. Vatul'yan
  • I. A. Guseva
Article
  • 18 Downloads

Keywords

Mathematical Modeling Mechanical Engineer Industrial Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    I. I. Vorovich and V. A. Babeshko, Dynamic Mixed Problems of the Theory of Elasticity for Nonclassical Regions [in Russian], Nauka, Moscow (1979).Google Scholar
  2. 2.
    A. 0. Vatul'yan, I. A. Guseva, and I. M. Syunyakova, “Fundamental solutions for orthotropic media and their applications,” Izv. Sev.-Kavk. Nauch. Tsentra Vyssh. Shk. Estestv. Nauki [Bulletin of the Southern Caucasian Center of the University of Natural Science], No. 2 (1989).Google Scholar
  3. 3.
    V. S. Budaev, “Roots of the characteristic equation and the classification of elastic anisotropic media,” Izv. Akad. Nauk Mekh. Tverd. Tela, No. 3 (1978).Google Scholar
  4. 4.
    E. L. Nakhmein and B. M. Nuller, “Dynamic contact problems for an orthotropic elastic half-plane and a component plane,” Prikl. Mat. Mekh.,54, No. 4 (1990).Google Scholar
  5. 5.
    K. Brebbia, J. Telles, and L. Wreubel, Method of Limiting Elements [Russian translation], Mir, Moscow (1987).Google Scholar
  6. 6.
    A. 0. Vatul'yan and A. Ya. Katsevich, “Vibrations of an elastic orthotropic layer with a cavity,” Prikl. Mekh. Tekh. Fiz., No. 1 (1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • A. 0. Vatul'yan
    • 1
  • I. A. Guseva
    • 1
  1. 1.Rostov-on-Don

Personalised recommendations