Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

The kinetic model of a carrier phase in a heterogeneous medium

  • 21 Accesses

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    A. V. Bogdanov, Yu. E. Gorbachev, G. V. Dubrovskii, et al., “The kinetic theory of a mixture of a gas with solid particles. I,” Preprint, No. 941, FTI im. A. F. Ioffe Akad. Nauk SSSR, Leningrad (1985).

  2. 2.

    G. V. Dubrovskii, A. V. Kondratenko, and V. A. Fedotov, “The kinetic model of structural gas suspension,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1 (1983).

  3. 3.

    V. V. Struminskii, “The effect of diffusion velocity on the flow of gas mixtures,” PMM,38, No. 2 (1974).

  4. 4.

    Yu. P. Lun'kin and V. F. Mymrin, “The kinetic gas suspension model,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No.1 (1981).

  5. 5.

    V. S. Galkin and N. K. Makashev, “Conditions of applicability and the molecular-kinetic derivation of the equations of multitemperature and multivelocity gasdynamics,” ZhVMMF,23, No. 6 (1983).

  6. 6.

    Dang Hong Tiem, “Derivation of generalized hydrodynamic equation for binary gas mixtures,” J. Méc. Théor. Appl.,3, No. 4 (1984).

  7. 7.

    L. Sirovich, “Kinetic simulation of gas mixtures,” in: Certain Problems in the Kinetic Theory of Gases [Russian translation], V. P. Shidlovskii (ed.), Mir, Moscow (1965).

  8. 8.

    M. N. Kogan, The Dynamics of a Rarefied Gas [in Russian], Nauka, Moscow (1967).

  9. 9.

    K. Cherchin'yani, The Theory and Application of the Boltzmann Equation [Russian translation], Mir, Moscow (1978).

  10. 10.

    A. V. Bogdanov, Yu. E. Gorbachev, and I. I. Tiganov, “Analytical approximations of the scattering cross sections and collision frequencies for model potentials,” Preprint No. 893, FTI im. A. F. Ioffe Akad. Nauk SSSR, Leningrad (1984).

  11. 11.

    Yu. E. Gorbachev, “Calculating the collision frequencies in heterogeneous media on the basis of the Kihara potential,” Zh. Tekh. Fiz.,50, No. 2 (1980).

  12. 12.

    E. G. Kolesnichenko, “A method for the derivation of hydrodynamic equations for complex systems,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3 (1981).

  13. 13.

    F. B. Hanson and T. F. Morse, “Kinetic models for a gas with internal structure,” Phys. Fluids,10, No. 2 (1967).

Download references

Author information

Additional information

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 30, No. 6, pp. 106–114, November–December, 1989.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gorbachev, Y.E. The kinetic model of a carrier phase in a heterogeneous medium. J Appl Mech Tech Phys 30, 936–943 (1989). https://doi.org/10.1007/BF00851502

Download citation

Keywords

  • Mathematical Modeling
  • Mechanical Engineer
  • Kinetic Model
  • Industrial Mathematic
  • Carrier Phase