Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Generalized kinetic model of the creep and rupture strength of a strain-hardening material

  • 15 Accesses

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    A. L. Arshakuni, “Kinetic variant of the theory of creep and rupture strength of metals,” Zh. Prikl. Mekh. Tekh. Fiz., No. 3 (1986).

  2. 2.

    I. I. Trunin, “One variant of the equation of state in creep,” in: Deformation and Fracture of Solids [in Russian], Izd. Mosk. Gos. Univ., Moscow (1977).

  3. 3.

    G. F. Lepin, Creep of Metals and Creep Resistance Criteria [in Russian], Metallurgiya, Moscow (1976).

  4. 4.

    O. V. Sosnin, “Evaluation of rupture strength from dissipative characteristics,” in: Laws of Creep and Rupture Strength [in Russian], Mashinostroenie, Moscow (1983).

  5. 5.

    B. V. Gorev, A. F. Nikitenko, and O. V. Sosnin, “Substantiation of an energy variant of creep theory,” Probl. Prochn., No. 11 (1976).

  6. 6.

    O. V. Sosnin and I. K. Shokalo, “Energy variant of the theory of creep and rupture strength,” Probl. Prochn., No. 1 (1974).

  7. 7.

    Yu. N. Rabotnov, Creep of Structural Elements [in Russian], Nauka, Moscow (1966).

  8. 8.

    A. L. Arshakuni, G. P. Mel'nikov, et al., “Experimental verification of models of transient creep,” Probl. Prochn., No. 4 (1981).

  9. 9.

    V. N. Kiselevskii and B. D. Kosov, “Experimental verification of the equation of state for the creep of a strain-hardening material,” Probl. Prochn., No. 9 (1976).

Download references

Author information

Additional information

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 148–152, July–August, 1989.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arshakuni, A.L. Generalized kinetic model of the creep and rupture strength of a strain-hardening material. J Appl Mech Tech Phys 30, 651–655 (1989). https://doi.org/10.1007/BF00851111

Download citation

Keywords

  • Mathematical Modeling
  • Mechanical Engineer
  • Kinetic Model
  • Industrial Mathematic
  • Rupture Strength